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Résumé et mots clés

Cette thèse est dédiée à la dérivation et à l’analyse mathématique de modèles
d’écoulements complexes. La motivation principale de ce travail est la description
des phénomènes d’avalanches. Ainsi, on s’intéresse à des modèles moyennés sur la
profondeur, et/ou décrivant des écoulements granulaires. Dans une première partie,
on étudie la structure des équations avec tenseur de Reynolds modélisant des fluides
parfaits. On caractérise tout d’abord la symétrisabilité des équations moyennées de
Reynolds. On étudie ensuite l’hyperbolicité de systèmes d’équations décrivant des
écoulements diphasiques. On montre que la présence du tenseur de Reynolds permet
de régulariser les équations. Dans une seconde partie, on présente un modèle à trois
équations moyennées sur la profondeur décrivant un écoulement granulaire incom-
pressible. En particulier, on obtient le premier modèle moyenné consistant à l’ordre 1
avec la rhéologie µ(I ). On examine les prédictions du modèle en étudiant l’instabilité
des ondes de surfaces. On donne ensuite une version régularisée de ce modèle, et on
montre sa pertinence dans des régimes non stationnaires et non uniformes, grâce à
des comparaisons avec des données expérimentales. On propose enfin un modèle
consistant avec une généralisation compressible de la rhéologie µ(I ), permettant de
prendre en compte des effets de dilatance. Dans une troisième partie, on montre
la stabilité asymptotique d’une onde progressive partiellement congestionnée pour
un modèle jouet de suspension granulaire. Le caractère granulaire du milieu est ici
modélisé via une viscosité effective qui diverge lorsque l’écoulement s’approche du
régime congestionné.

Mots clés : modélisation, équations aux dérivées partielles, écoulements cisaillés,
écoulements peu profonds, milieux granulaires, écoulements multiphasiques, sys-
tèmes hyperboliques
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Abstract and keywords

This thesis is dedicated to the derivation and analysis of mathematical models for
complex flows. The main motivation of this work is the description of avalanches.
As a consequence, the study focuses on depth-averaged models, and/or models of
granular flows. In a first part, the structure of Reynolds equations for perfect fluids
is studied. A characterization of the symetrisability of the equations is given. The
hyperbolicity of systems of equations describing two-phase flows is then investigated.
It is shown that the presence of the Reynolds tensor regularizes the equations. In a
second part, a three-equation depth-averaged model for an incompressible granular
flow is presented. In particular, the first depth-averaged model consistent up to order
1 with the µ(I )-rheology is obtained. The predictions of the models for the roll waves
instability are examined. A regularized version of the model is then given, which is
shown to be pertinent in non stationary and non uniform regimes through comparison
with experimental data. Finally, a model consistently derived from a compressible
generalization of the µ(I )-rheology and enabling to take dilatancy effects into account
is presented. In a third part, a proof of the asymptotic stability of partially congested
profiles for a granular suspension toy model is provided. In this model, granular effects
are taken into account via a singular effective viscosity, that diverges when the flow
reaches a congested regime.

Keywords: modelling, partial differential equations, shear flows, shallow water flows,
granular media, multi-phase flows, hyperbolic systems
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Introduction

Les avalanches de neige, de blocs rocheux et de glace constituent un aléa important
en montagne, qui risque d’augmenter avec le réchauffement climatique (dégel du
permafrost, instabilités et ruptures glaciaires). Afin d’évaluer les risques et de mettre en
œuvre des mesures de protection adéquates, il est important de disposer de modèles
mathématiques fiables permettant des simulations numériques d’événements dans
des temps de calcul raisonnables. Cette thèse est dédiée à la dérivation et à l’analyse de
modèles mathématiques adaptés à la description des avalanches de neige sèche. Les
outils utilisés pour cela sont ceux de la mécanique des fluides, qui décrit l’écoulement
de milieux considérés comme continus. Plus précisément, on suppose souvent que
les avalanches se comportent comme un fluide complexe, par opposition à des fluides
comme l’eau liquide ou l’air, dont le comportement est en général plus simple. Pour
écrire des modèles précis et pertinents, il est nécessaire de prendre en compte les
spécificités de la situation étudiée. Dans cette thèse, les efforts de modélisation sont
principalement portés sur les deux axes suivants :

Modèles moyennés

Afin d’obtenir un modèle peu coûteux en temps de calcul et donc facilement utili-
sable en pratique, une attention particulière est portée sur les modèles d’équations
moyennées sur la profondeur. Ces modèles permettent en effet de réduire de un la
dimension d’espace, et donc d’être rapidement résolus numériquement. L’utilisation
de tels modèles pour la description des avalanches peut être justifiée par les propriétés
physiques des avalanches. En effet, la longueur typique d’une avalanche est généra-
lement très supérieure à sa hauteur typique. Le prix à payer de cette approche est
une éventuelle perte d’information (par exemple, la vitesse exacte est remplacée par
la vitesse moyenne), qui peut se traduire à terme par une perte de précision. Pour
contourner ce problème, on présente dans cette thèse des modèles augmentés, avec
une variable supplémentaire, obtenue de manière consistante avec le processus de
moyennisation et permettant de stocker des informations additionnelles. Plus pré-
cisément, on considère des modèles avec tenseur de Reynolds, ce qui permet dans
ce contexte de connaître le cisaillement vertical de l’écoulement. La structure mathé-
matique de modèles de mécanique des fluides avec tenseur de Reynolds est étudiée
dans la première partie de la thèse, et fait l’objet de deux résultats. Le premier résultat
concerne la symétrisabilité des équations en dimensions 2 et 3. Le second résultat
concerne la dérivation de modèles multiphasiques avec tenseur de Reynolds.
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Introduction

Milieux granulaires

Un autre aspect dont la prise en compte est cruciale pour la modélisation est la
nature du matériau considéré et sa manière de s’écouler. En ce qui concerne les ava-
lanches de neige, on distingue deux grandes familles : les avalanches de neige sèche
et les avalanches de neige humide. On se concentre ici sur la neige sèche, qui peut être
décrite physiquement par un matériau granulaire, c’est-à-dire par un milieu constitué
d’un grand nombre de particules solides. Dans ces avalanches, la neige peut se diviser
en une couche dense, située près du sol, et une couche diluée formant un aérosol
dans la partie supérieure de l’avalanche. Plus généralement, les milieux granulaires
peuvent exhiber des comportements très variés, assimilables selon les régimes à un
matériau solide, liquide ou gazeux. On se focalise ici sur la description de la partie plus
dense de l’avalanche, pour laquelle on néglige le rôle de l’air. Les modèles obtenus
dans ce contexte peuvent donc a priori être appliqués à d’autres types d’écoulements
géophysiques (éboulements rocheux, sable). Dans ce régime dense, des effets col-
lectifs complexes sont causés par les nombreuses interactions mécaniques entre les
particules (collisions, friction). On se restreint ici à la description de ces phénomènes
purement mécaniques, et on ne prend pas en compte les effets thermiques. Un phé-
nomène physique déterminant pour la description des milieux granulaires dense est
la friction entre les particules. Dans un modèle de milieu continu, la friction peut être
modélisée par une rhéologie adaptée, qui décrit la déformation du milieu sous l’effet
de contraintes. Diverses rhéologies frictionnelles ont été proposées empiriquement
pour les milieux granulaires. Mathématiquement, l’analyse des équations corres-
pondantes peut se révéler complexe, et ces rhéologies sont parfois mal posées. La
deuxième partie de cette thèse est consacrée à la dérivation de modèles moyennés sur
la profondeur pour un écoulement granulaire sec. Les modèles obtenus fournissent
une approximation à la fois consistante et bien posée d’une rhéologie granulaire
(rhéologie µ(I )). Des validations des modèles par comparaison avec des mesures expé-
rimentales sont effectuées. Dans la troisième partie, on étudie le caractère bien-posé
d’un modèle jouet inspiré d’une rhéologie de suspension granulaire, la rhéologie µ(J ),
qui décrit un milieu granulaire immergé dans une phase liquide en considérant à la
fois la friction entre les particules et des interactions hydrodynamiques. Les équations
considérées ont également été obtenues par homogénéisation et modélisent des effets
de congestion, aussi appelée jamming, qui apparaissent lorsque la concentration des
particules solides dans le milieu approche un seuil critique. Le résultat clef présenté
dans cette partie est la stabilité asymptotique, dans un espace d’énergie adapté, d’une
solution de type onde progressive modélisant un front partiellement congestionné.

Le reste de cette introduction est dédié à une présentation détaillée des différents
outils utilisés dans cette thèse, ce qui permet d’énoncer les résultats obtenus de
manière plus précise tout en les situant dans un contexte plus global. En section 1,
on rappelle les équations de la mécanique des fluides et des écoulements moyennés
sur la profondeur. La section 2 se concentre sur l’étude structurelle des équations des
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fluides parfaits, i.e. pour lesquels les effets de friction ne sont pas pris en compte, et le
rôle joué par le tenseur de Reynolds. Deux résultats de la thèse sont présentés dans les
paragraphes 2.3 et 2.4. Enfin, la section 3 est dédiée à la présentation de rhéologies
frictionnelles utilisées dans la modélisation des écoulements granulaires. Des résultats
de la thèse sont présentés dans les paragraphes 3.2, 3.3 et 3.4.

1. Équations générales de la mécanique des fluides
Dans cette section, on donne une présentation générale des équations de la mé-

canique des fluides, et on montre comment appliquer ces équations dans le cas des
écoulements moyennés sur la profondeur. Cette section a uniquement pour but d’in-
troduire les différents outils mathématiques qui sont courants en mécanique des
fluides et qui seront utilisés tout au long de la thèse. En particulier, aucun résultat
original n’est énoncé dans cette section. Les personnes familières avec le formalisme
de la mécanique des fluides peuvent donc directement passer à la section 2.

Le point de vue adopté ici pour présenter ce formalisme est celui des équations
bilans. Les bilans jouent en effet un rôle important en modélisation, car ils permettent
de relier entre elles deux échelles cruciales, appelées ici échelles macroscopique et
mésoscopique (LEFEVRE et al. 2022) :

1. L’échelle macroscopique correspond aux grandeurs physiques qui peuvent être
mesurées sur le terrain ou en laboratoire. Ces mesures concernent donc des
objets de taille finie, c’est-à-dire de longueur/surface/volume non nuls. Dans le
contexte des milieux granulaires, la précision des mesures effectuées en labora-
toire est typiquement de l’ordre du dixième de millimètre.

2. L’échelle mésoscopique est une échelle à laquelle le système étudié peut être
considéré comme un milieu continu. Les grandeurs mésoscopiques sont définies
localement, c’est-à-dire en tout point de l’espace et du temps. Cette échelle est
donc particulièrement adaptée pour écrire des équations d’évolution, puisque
l’état du milieu est connu avec une infinie précision. On l’appelle ici mésosco-
pique car elle se situe entre les échelles macroscopique et microscopique (qui
considère chaque particule individuellement). Un volume mésoscopique doit
donc être suffisamment important pour contenir un grand nombre de particules,
et suffisamment petit pour être négligeable devant les volumes macroscopiques
considérés.

On modélise donc le système grâce à des équations locales décrivant l’évolution de
grandeurs mésoscopiques. Ces équations sont dérivées à l’aide de bilans, écrits à
l’échelle macroscopique à partir des lois de la physique. Réciproquement, ces bilans
permettent ensuite d’obtenir l’évolution des grandeurs physiques macroscopiques
à partir des équations locales. Si les équations locales sont exactes et fermées, elles
demandent en revanche de connaître la solution en tout point, ce qui peut en pra-
tique nécessiter beaucoup de temps de calcul et n’est pas forcément utile selon les
applications. Au contraire, si on se contente d’écrire des équations pour les grandeurs
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macroscopiques qu’on veut modéliser, on n’obtient pas en général un système d’équa-
tions fermé, et on doit donc procéder à des approximations pouvant induire une perte
de précision. Dans le contexte des écoulements en couche mince, un bon compromis
est de considérer une échelle intermédiaire, qui est l’échelle des écoulements moyen-
nés sur la profondeur. Les équations correspondantes peuvent être obtenues à partir
des équations locales en faisant des bilans partiels et sont introduites à la fin de cette
section. On commence par présenter la notion de trajectoires au paragraphe 1.1, ce
qui permet d’utiliser les points de vue eulérien et lagrangien. Les paragraphes 1.2, 1.3
et 1.4 sont respectivement consacrés aux équations de la masse, de la quantité de
mouvement et de l’énergie. Le paragraphe 1.5 est dédié aux équations moyennées sur
la profondeur.

1.1. Trajectoires
1.1.1. Points de vue eulérien et lagrangien

À l’échelle mésoscopique, un fluide est un milieu continu, occupant un domaine
Ω ∈ Rd . Son mouvement est donc décrit par un continuum de trajectoires, notées
x(t , X ) ∈Ω. Le label X ∈Ω est la position initiale de la trajectoire à un instant donné
(ici t = 0) et permet de distinguer les différentes trajectoires entre elles. Il peut être
interprété comme une étiquette qui suit chaque "particule fluide" et est appelé coor-
donnée lagrangienne. Les quantités qui dépendent de la coordonnée X sont appelées
quantités lagrangiennes.

Exemple 1. La vitesse lagrangienne est définie par

v l (t , X ) := ∂t x(t , X ). (0.1)

C’est la vitesse de la particule fluide qui était à la position X à l’instant t = 0. De même,
on peut définir l’accélération lagrangienne

al (t , X ) := ∂t v l (t , X ) = ∂2
t x(t , X ). (0.2)

Ce sont les mêmes définitions qu’en mécanique du point.

Cependant, en mécanique des fluides, il est souvent plus utile de connaître les
propriétés du fluide à un endroit de l’espace qui reste fixe à mesure que le temps
passe, plutôt que de suivre individuellement chaque trajectoire. C’est le point de
vue eulérien. À chaque variable lagrangienne f l (t , X ), on peut associer la variable
eulérienne correspondante notée f (t , x) par

f l (t , X ) = f (t , x(t , X )). (0.3)

On supposera que pour tout instant t , l’application X 7→ x(t , X ) est un difféomor-
phisme, d’inverse noté x 7→ X (t , x). La donnée X (t , x) est la position initiale d’une
particule fluide se trouvant en position x à l’instant t . Elle permet d’exprimer un
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champ eulérien en fonction du champ lagrangien correspondant :

f (t , x) = f l (t , X (t , x)). (0.4)

Exemple 2. La vitesse eulérienne est définie par

v(t , x) = v l (t , X (t , x)), ou de manière équivalente, v l (t , X ) = v(t , x(t , X )). (0.5)

En dérivant cette dernière expression par rapport au temps, on obtient

a(t , x(t , X )) = al (t , X ) = ∂t v l (t , X ) = [∂t v + (v ·∇)v](t , x(t , X )), (0.6)

d’où l’expression de l’accélération eulérienne :

a(t , x) = [∂t v + (v ·∇)v](t , x). (0.7)

Il est important d’avoir à l’esprit le fait que les quantités f et f l représentent la
même grandeur physique. La différence est que la variable f l indique la valeur de
cette grandeur pour chaque particule, alors que la variable f indique cette grandeur
à chaque position x ∈Ω. Il est donc plus adéquat de considérer le passage de f à f l

comme un changement de variables plutôt que comme un changement de fonction.
D’une manière générale, il est plus simple d’exprimer les lois de la physique dans les

coordonnées lagrangiennes. En effet, le point de vue lagrangien permet de considérer
un système fermé (i.e. qui n’échange pas de matière avec l’extérieur). Au contraire,
en eulérien, les particules considérées en un point ne sont jamais les mêmes. Dans
la suite, on va donc écrire d’abord les équations du mouvement dans les variables
lagrangiennes, pour ensuite les transposer dans les coordonnées eulériennes.

1.1.2. Transport

Supposons qu’une quantité f soit transportée par le fluide. Autrement dit, f est
constante le long des trajectoires. En coordonnées lagrangiennes, cela s’écrit simple-
ment

f l (t , X ) = f l (0, X ). (0.8)

En dérivant cette équation par rapport au temps, on obtient

0 = ∂t f l (t , X ) = [∂t f + v ·∇ f ](t , x(t , X )). (0.9)

On appelle équation de transport l’équation

∂t f + v ·∇ f = 0. (0.10)

Formellement, l’équation de transport (0.10) est l’équivalent eulérien de (0.8). Comme
on se place généralement du point de vue eulérien, c’est la forme (0.10) qui est la plus
utilisée. Notons cependant que l’équation (0.8) a du sens même si f n’est pas dérivable.
Par extension, on peut dire que f est solution d’une équation de transport même
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quand f n’est pas une fonction régulière. Notons cependant que le passage entre les
points de vue eulérien et lagrangien n’est pas toujours évident pour des fonctions
non régulières (voir par exemple WAGNER 1987 pour un exemple de justification de ce
passage dans un cas particulier).

Exemple 3. On dit qu’un ensemble ω(t) ⊂ Ω est transporté par le fluide s’il existe
ω0 ⊂Ω tel que ω(t ) = x(t ,ω0). Mathématiquement, cela revient à dire que la fonction
indicatrice

1ω(t , x) :=
{

1, si x ∈ω(t ),

0, sinon,
(0.11)

est solution de l’équation de transport (0.10). En effet, on a 1l
ω = 1ω0 . En physique, on

dit que le fluide contenu dans ω(t ) est un système fermé.

Lorsqu’une quantité f varie le long de la trajectoire, on connaît souvent son taux
d’évolution grâce à la physique du modèle. On peut alors écrire une version plus
générale de l’équation de transport (0.10), dans laquelle le zéro du membre de droite
est remplacé par un terme source S, qui représente ici le taux d’évolution de f le long
de la trajectoire :

∂t f + v ·∇ f = S. (0.12)

Exemple 4. Considérons un écoulement à surface libre tel que représenté sur la Figure
1. On note x ∈ Rd−1 et z ∈ R (resp. u ∈ Rd−1 et w ∈ R) les coordonnées (resp. vitesses)
horizontale et verticale. On note h(t , x) ∈R la hauteur de fluide à l’instant t au point x.
L’évolution de h est donnée par la condition cinématique suivante :

∂t h +u(h) ·∇h = w(h), avec f (h)(t , x) := f (t , x,h(t , x)). (0.13)

Cette condition cinématique sert de condition aux limites dans les problèmes d’écoule-
ment à surface libre. On voit que la hauteur h est solution d’une équation de transport
avec terme source. Le membre de gauche signifie que la hauteur est transportée à la
vitesse horizontale évaluée à la surface libre u(h). Le membre de droite signifie que la
dérivée de la hauteur le long de la trajectoire est donnée par la vitesse verticale du fluide
évaluée à la hauteur h.

FIGURE 1. – Schéma d’écoulement à surface libre
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1.2. Bilan de masse
1.2.1. Masse et densité

La masse d’un volume de fluide est une quantité qui peut être définie comme la
résistance à la modification de sa vitesse par une force extérieure. En effet, on peut
réécrire le principe fondamental de la dynamique pour une particule ponctuelle de
masse m comme

a = F

m
. (0.14)

Ainsi, si on applique une force F donnée à une particule de masse m, on voit que plus
la masse de la particule est importante, plus son accélération est faible.

Pour un milieu continu, la masse dépend du volume considéré. On note M(t ,ω) la
masse du fluide contenu dansω à l’instant t . La masse vérifie les propriétés suivantes :

— M(t ,ω) ≥ 0,
— M(t ,;) = 0,
— Si les ensembles {ωn}n∈N sont deux à deux disjoints, alors

M

(
t ,

⊔
n∈N

ωn

)
= ∑

n∈N
M(t ,ωn).

On dit que la masse est une grandeur extensive.
Mathématiquement, ces trois propriétés signifient que, pour tout t , l’application
ω 7→ M(t ,ω) est une mesure. Cette mesure satisfait une propriété supplémentaire, qui
vient du fait que le fluide est décrit comme un milieu continu :

— Si |ω| = 0, alors M(t ,ω) = 0, où |ω| désigne le volume de ω.
On dit que M(t , ·) est absolument continue par rapport à la mesure de Lebesgue. Le
théorème de Radon-Nikodym implique alors qu’il existe une fonction ρ(t , x) ≥ 0 telle
que, pour tous t ,ω,

M(t ,ω) =
∫
ω
ρ(t , x)dx. (0.15)

Le champ ρ est appelé la densité du fluide (en théorie de la mesure, cela correspond à
la dérivée de Radon-Nikodym de la masse par rapport à la mesure de Lebesgue). On
peut également définir la densité lagrangienne ρl par

ρl (t , X ) := ρ(t , x(t , X )). (0.16)

1.2.2. Conservation

Le principe de conservation de la masse énonce que la masse de fluide contenue
dans un ensemble ω(t ) transporté par le fluide est constante :

M(t ,ω(t )) = M(0,ω0), soit
∫
ω(t )

ρ(t , x)dx =
∫
ω0

ρ(0, x)dx. (0.17)
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En faisant le changement de variables x = x(t , X ), avec x(0, X ) = X , on obtient∫
ω0

ρl (t , X )J (t , X )dX =
∫
ω0

ρl (0, X )dX , où J := det
∂x

∂X
> 0 (0.18)

(la positivité de J est assurée par le fait que J(0, X ) = 1 et que J ne s’annule pas).
Comme ω0 est arbitraire, on en déduit la version lagrangienne de l’équation locale de
conservation de la masse :

ρl J = ρ|t=0. (0.19)

En dérivant par rapport au temps et en utilisant la formule ∂t J = J(divv)l , on en
déduit l’équation de conservation de la masse dans les coordonnées eulériennes, ou
simplement équation de conservation :

∂tρ+div(ρv) = 0. (0.20)

Plus généralement, en reprenant ce calcul, on peut démontrer la proposition suivante :

Proposition 1. (Théorème de transport de Reynolds) Si ω(t) ∈Ω est transporté par le
fluide, alors pour tout champ ϕ=ϕ(t , x) ∈R, on a

d

d t

∫
ω(t )

ϕ(t , x)dx =
∫
ω(t )

[
∂tϕ+div(ϕv)

]
(t , x)dx. (0.21)

Remarque 1. Formellement, on peut retrouver la formule ci-dessus en utilisant l’équa-
tion de transport satisfaite par 1ω. En effet, on a pour tout t

d

d t

∫
ω(t )

ϕdx = d

d t

∫
Rd
ϕ1ω(t )dx =

∫
Rd

(∂tϕ1ω(t ) +ϕ∂t 1ω(t ))dx

=
∫
Rd

(
∂tϕ1ω(t ) −ϕv ·∇1ω(t )

)
dx =

∫
Rd

1ω(t )
[
∂tϕ+div(ϕv)

]
dx

=
∫
ω(t )

[
∂tϕ+div(ϕv)

]
dx.

Exemple 5. En prenant ϕ(t , x) = 1, on obtient que la dérivée du volume d’un ensemble
ω(t ) ⊂Ω transporté par le fluide est donnée par

d

d t
|ω(t )| = d

d t

∫
ω(t )

dx =
∫
ω(t )

div(v)dx (0.22)

Cela donne une interprétation supplémentaire de l’équation de conservation de la
masse. En effet, on peut la réécrire comme une équation de transport avec terme source :

∂tρ+ v ·∇ρ =−ρdiv(v). (0.23)

Si par exemple div(v) > 0, la formule (0.22) implique que le volume occupé par le fluide
augmente. L’équation (0.23) indique que la densité doit diminuer le long des trajectoires.
La compensation entre l’augmentation du volume et la diminution de la densité permet
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à la masse de rester constante.

Définition 1. On appelle écoulement incompressible un écoulement pour lequel on a
en tout point div(v) = 0. Dans le cas contraire, on parle d’écoulement compressible.

Remarque 2. Par l’exemple précédent, considérer un écoulement incompressible revient
à dire que le volume de tout ensemble transporté par le fluide est constant. Dans ce cas,
(0.23) implique que la densité ρ est transportée par le fluide. Une solution particulière de
(0.23) pour un écoulement incompressible est une densité ρ constante. Réciproquement,
un écoulement pour lequel ρ est constante est nécessairement incompressible. On parle
alors d’écoulement incompressible homogène. Si la densité ρ n’est pas constante, on
parle d’écoulement incompressible inhomogène.

Remarque 3. Le principe de conservation de la masse a été énoncé d’un point de
vue lagrangien (la masse d’un ensemble transporté par le fluide est constante). Grâce
à l’équation de conservation (0.20), on peut exprimer ce principe d’un point de vue
eulérien. En effet, si ω⊂Ω est un domaine fixe, on a

d

d t
M(t ,ω) = d

d t

∫
ω
ρdx =

∫
ω
∂tρdx =−

∫
ω

div(ρv)dx =−
∫
∂ω
ρv ·ndS, (0.24)

où la dernière égalité est obtenue en appliquant la formule de Stokes, avec ∂ω le bord
de ω, n la normale sortante et dS la mesure de Hausdorff sur ∂ω. On dit que la dérivée
de la masse de fluide contenue dans ω est donnée par le flux de masse qui passe à
travers ∂ω. En effet, si on se place en un point x ∈ ∂ω, la quantité v ·ndSdt représente le
volume infinitésimal dV de fluide qui sort de ω par le point x pendant dt (voir Figure
2). En multipliant par ρ, on obtient donc la masse infinitésimale qui sort à cet endroit
pendant dt .

FIGURE 2. – Volume infinitésimal de fluide sortant de ω (en gris) pendant dt .

1.3. Quantité de mouvement
1.3.1. Bilan de quantité de mouvement

Dans la partie précédente, on a utilisé le bilan d’une quantité macroscopique (la
masse) afin d’obtenir une équation d’évolution locale pour la densité (équation de
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conservation). On voudrait appliquer cette même méthode afin d’obtenir une équa-
tion d’évolution pour la vitesse du fluide. Cependant, contrairement à la masse, la
vitesse n’est pas une grandeur extensive. C’est pourquoi on va plutôt utiliser la quantité
de mouvement, définie pour un ensemble ω⊂Ω à un instant t par

Q(t ,ω) =
∫
ω
ρvdx. (0.25)

Dans un volume ω(t) ⊂ Ω transporté par le fluide, le principe fondamental de la
dynamique s’écrit

d

d t
Q(t ,ω(t )) = FR , (0.26)

avec FR la résultante des forces s’appliquant au fluide contenu dans ω(t ).

Remarque 4. En introduisant v̄ la vitesse définie par

v̄(t ,ω) = 1

M(t ,ω)

∫
ω
ρvdx, (0.27)

et en utilisant la conservation de la masse, le principe fondamental de la dynamique
(0.26) peut se réécrire

M(t ,ω(t ))
d

d t
v̄(t ,ω(t )) = FR . (0.28)

On retrouve une formulation analogue à celle de la mécanique du point. La vitesse v̄ ,
qui peut être vue comme une vitesse moyenne, est plus précisément la vitesse du centre
de gravité xG de l’ensemble transporté par le fluide, défini par

xG (t ,ω) = 1

M(t ,ω)

∫
ω
ρxdx. (0.29)

En effet, le théorème de transport de Reynolds couplé avec la conservation de la masse
donne

d

d t
xG (t ,ω(t )) = 1

M(t ,ω(t ))

∫
ω(t )

[
∂t (ρx)+div(ρv ⊗x)T ]

dx

= 1

M(t ,ω(t ))

∫
ω(t )

[
(∂tρ+div(ρv))x + (ρv ·∇)x

]
dx = v̄(t ,ω(t )).

Pour exprimer la résultante des forces FR , on distingue deux types de forces : les
forces volumiques, qui s’exercent à l’intérieur du volume ω(t) et qui ont une cause
extérieure au fluide, et les forces surfaciques, qui s’exercent sur le bord ∂ω(t) et qui
sont causées par les interactions du fluide à l’extérieur de ω(t) sur le fluide qui se
trouve dans ω(t ).

Exemple 6. Le poids, noté FP , est une force volumique qui est proportionnelle à la
masse du fluide. Il s’écrit

FP (t ,ω) = M(t ,ω)g =
∫
ω
ρ(t , x)gdx, (0.30)
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avec g ∈Rd le vecteur constant d’accélération de la pesanteur. C’est la seule force volu-
mique considérée dans cette thèse.

Les forces surfaciques, notées FS , peuvent s’écrire comme une intégrale sur le bord
∂ω(t ) :

FS =
∫
∂ω(t )

s(t , x,n)dS, (0.31)

avec s(t , x,n) = s(n) ∈Rd la force par unité de surface s’exerçant sur le bord au point x
et à l’instant t . En écrivant la résultante des forces comme FR = FP+FS et en appliquant
la Proposition 1 à chaque coordonnée du vecteur de quantité de mouvement, on peut
réécrire le principe fondamental de la dynamique comme∫

ω(t )

[
∂t (ρv)+div(ρv ⊗ v)T ]

dx =
∫
ω(t )

ρgdx +
∫
∂ω(t )

s(n)dS. (0.32)

1.3.2. Tenseur des contraintes

Afin de déduire du principe fondamental de la dynamique une équation d’évolution
locale, il faut exprimer la dernière intégrale du membre de droite de (0.32) comme
une intégrale sur ω(t ). C’est rendu possible par la proposition suivante :

Proposition 2. (Existence du tenseur des contraintes) Il existe un tenseur symétrique
σ=σ(t , x) tel que, pour tout vecteur n, on a s(n) =σn.

La preuve de cette proposition peut s’effectuer en trois étapes (voir par exemple le
livre de SARAMITO 2016).

— La première étape consiste à montrer la troisième loi de Newton, aussi appelé
principe des actions réciproques, qui s’écrit simplement ici s(−n) =−s(n). C’est
une conséquence du principe fondamental de la dynamique et du fait que la
quantité de mouvement est une grandeur extensive.

— La deuxième étape utilise la relation s(−n) =−s(n) pour obtenir l’existence d’un
tenseur σ tel que s(n) =σn.

— La troisième étape est la preuve queσ=σT . C’est une conséquence du théorème
du moment cinétique, qui stipule que, pour tout ensemble ω(t ) ⊂Ω transporté
par le fluide, on a

d

d t
L(t ,ω(t )) =

∫
ω(t )

x ∧ρgdx +
∫
∂ω(t )

x ∧ s(n)dS, où L(t ,ω) =
∫
ω

x ∧ρvdx.

(0.33)
La quantité L(t ,ω) est le moment cinétique du fluide contenu dans ω à l’instant
t . C’est l’analogue de la quantité de mouvement pour les rotations.

Par la proposition 2 et la formule de Stokes, on peut réécrire la contribution des forces
surfaciques : ∫

∂ω(t )
s(n)dS =

∫
∂ω(t )

σndS =
∫
ω(t )

div(σ)T dx. (0.34)
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Le principe fondamental de la dynamique (0.32) devient alors :∫
ω(t )

[
∂t (ρv)+div(ρv ⊗ v)T −ρg−div(σ)T ]

dx = 0. (0.35)

On en déduit l’équation locale de conservation de la quantité du mouvement :

∂t (ρv)+div(ρv ⊗ v)T = ρg+div(σ)T . (0.36)

En utilisant l’équation de conservation de la masse (0.20), et en divisant l’équation
(0.36) par ρ, on obtient l’équation d’évolution pour la vitesse :

∂t v + (v ·∇)v = g+ 1

ρ
div(σ)T . (0.37)

Remarque 5. On reconnaît dans le membre de gauche de (0.36) la structure de l’équa-
tion de conservation (0.20). On dit que la densité de quantité de mouvement ρv est
une variable conservative. Les variables conservatives (comme ρ ou ρv) peuvent être
associée à des grandeurs macroscopiques extensives (comme la masse M ou la quantité
de mouvement Q = M v̄). En revanche, l’équation (0.37) a une structure d’équation de
transport. On dit que la vitesse est non conservative. Plus généralement, si une grandeur
f satisfait une équation de transport

∂t f + v ·∇ f = S, (0.38)

alors le produit ρ f satisfait l’équation de conservation

∂t (ρ f )+div(ρ f v) = ρS. (0.39)

1.4. Énergie
L’énergie d’un système est une grandeur fondamentale. En physique, elle permet de

caractériser l’état du système. D’un point de vue mathématique, c’est une grandeur qui
agit comme une norme pour les variables qui décrivent le fluide. Contrôler l’énergie
est souvent crucial pour montrer que les équations sont bien posées, c’est-à-dire
qu’il y a existence et unicité des solutions, ainsi qu’une dépendance continue de ces
solutions par rapport à leur valeur initiale.

1.4.1. Énergie cinétique

L’énergie cinétique est la part d’énergie du fluide qui est liée à son mouvement.
Pour obtenir une équation d’évolution locale de l’énergie cinétique, on peut partir de
l’équation de conservation de la quantité de mouvement (0.36) et prendre le produit
scalaire par la vitesse v . En utilisant l’équation de conservation de la masse, on arrive
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à l’équation suivante :

∂t

(
1

2
ρ|v |2

)
+div

(
1

2
ρ|v |2v

)
= ρg · v +div(σ)v. (0.40)

On reconnaît la structure de l’équation de conservation dans le membre de gauche. La
quantité ρec := ρ|v |2/2 est appelée la densité d’énergie cinétique. Cela signifie qu’on
peut définir l’énergie cinétique du fluide contenu dans un ensemble ω⊂Ω au temps t
par

Ec (t ,ω) =
∫
ω
ρec (t , x)dx =

∫
ω

1

2
ρ|v |2(t , x)dx. (0.41)

En intégrant l’équation (0.40) sur un ensemble ω(t) ⊂Ω transporté par le fluide, on
obtient avec le théorème de transport 1 la formule suivante :

d

d t
Ec (t ,ω(t )) =

∫
ω(t )

[
∂t

(
1

2
ρ|v |2

)
+div

(
1

2
ρ|v |2v

)]
dx =

∫
ω(t )

ρg ·vdx+
∫
ω(t )

div(σ)vdx.

(0.42)
En utilisant la formule de Stokes et la symétrie du tenseur des contraintes, la dernière
intégrale peut se réécrire comme∫

ω(t )
div(σ)vdx =

∫
ω(t )

[div(σv)−σ : D(v)]dx =
∫
∂ω(t )

v ·σndS −
∫
ω(t )

σ : D(v)dx,

(0.43)
avec

D(v) := 1

2

[
∂v

∂x
+

(
∂v

∂x

)T ]
, (0.44)

et ∂v/∂x la matrice jacobienne de la vitesse v . On en déduit le théorème de l’énergie
cinétique pour un fluide :

d

d t
Ec (t ,ω(t )) =

∫
ω(t )

ρg · vdx +
∫
∂ω(t )

v ·σndS −
∫
ω(t )

σ : D(v)dx. (0.45)

On voit que la dérivée de l’énergie cinétique du fluide contenu dans ω(t) s’exprime
comme une somme de trois termes :

— Le premier terme correspond à la puissance associée au poids,
— Le second terme est la puissance des forces exercées par le fluide situé à l’exté-

rieur de ω(t ) sur le bord ∂ω(t ). Il est parfois noté Ẇ :

Ẇ =
∫
∂ω(t )

v ·σndS. (0.46)

— Enfin, le troisième terme est la puissance des forces que le fluide à l’intérieur de
ω(t ) exerce sur lui-même. Contrairement aux deux précédents, il ne correspond
à aucune force intervenant dans le bilan de quantité de mouvement (0.32). En
effet, par le principe des actions réciproques, la résultante des actions du fluide
sur lui-même est nécessairement nulle. Cependant, la puissance associée à
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ces interactions n’est pas égale à zéro en général. Cette puissance est appelée
une puissance intérieure. Notons qu’ici, cette puissance vaut zéro si D(v) =
0. Comme expliqué par le lemme suivant, cela signifie qu’elle provient de la
déformation du fluide.

Lemme 1. Un milieu continu est en mouvement rigide, i.e. le champ de vitesse peut
s’écrire comme la somme d’une translation et d’une rotation,

v(t , x) = v0(t )+ω(t )∧x, (0.47)

si, et seulement si, on a D(v) = 0.

Une preuve de ce lemme peut être trouvée par exemple dans le livre de Franck BOYER

et al. 2012.

Remarque 6. En utilisant la vitesse v̄ du centre de gravité (0.27), on peut écrire la
densité d’énergie cinétique comme

1

2
ρ|v |2 = 1

2
ρ|v̄ |2 +ρ(v − v̄) · v̄ + 1

2
ρ|v − v̄ |2, (0.48)

ce qui donne après intégration et en utilisant la définition de v̄,

Ec = 1

2
M |v̄ |2 + 1

2

∫
ω
ρ|v − v̄ |2dx (0.49)

L’énergie cinétique se décompose donc comme la somme de deux termes positifs. Le
terme M |v̄ |2/2 correspond à l’énergie cinétique de translation du fluide à vitesse v̄ . Le
second terme correspond à l’énergie cinétique calculée dans le référentiel du centre de
gravité et fait intervenir le second moment de la vitesse. En utilisant la conservation de
la masse et le principe fondamental de la dynamique (0.28), on peut calculer la dérivée
temporelle de l’énergie cinétique de translation à vitesse v̄ dans un ensemble transporté
par le fluide :

d

d t

1

2
M |v̄ |2 = M

d v̄

d t
· v̄ = Mg · v̄ +

∫
∂ω
σn · v̄dS (0.50)

En soustrayant cette équation au théorème de l’énergie cinétique (0.45), on en déduit
que l’évolution du second moment de la vitesse est donnée par

d

d t

1

2

∫
ω(t )

ρ|v − v̄ |2dx =
∫
∂ω(t )

(v − v̄) ·σdS −
∫
ω(t )

σ : D(v)dx. (0.51)

Par conséquent, on voit qu’à l’échelle macroscopique, le bilan de quantité de mouvement
et d’énergie cinétique sont indépendants :

— Le bilan de quantité de mouvement donne l’évolution de v̄ (moment d’ordre 1 de
la vitesse). Il permet donc de décrire l’écoulement moyen du fluide.

— Le bilan d’énergie cinétique donne l’évolution du moment d’ordre 2 de la vitesse. Il
fait intervenir les fluctuations de vitesse, et joue donc un rôle crucial dans l’étude
de la turbulence.
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1.4.2. Énergie totale

En général, l’énergie cinétique n’est pas le seul type d’énergie présent au sein d’un
fluide. En effet, il existe également d’autres types d’énergie : l’énergie potentielle
et l’énergie interne. La prise en compte de ces grandeurs permet d’obtenir une loi
de conservation supplémentaire. En effet, si on définit l’énergie totale comme la
somme des énergies cinétique, potentielle et interne, on peut énoncer le premier
principe de la thermodynamique, qui stipule que l’énergie totale d’un système isolé
(i.e. qui n’échange ni matière, ni travail, ni chaleur avec l’extérieur) est constante. En
d’autres mots, les puissances intervenant dans le théorème de l’énergie cinétique
(0.45) peuvent se réécrire comme des dérivées temporelles de grandeurs qui sont
interprétées comme des formes d’énergie additionnelles.

Exemple 7. En remarquant que l’accélération de la pesanteur g peut s’écrire comme
g =−∇(g z), avec g la norme du vecteur d’accélération de la pesanteur, tel que g =−g ez ,
on obtient

v ·g =−v ·∇(g z) =−∂t (g z)− v ·∇(g z). (0.52)

On reconnaît une structure d’équation de transport. En utilisant la remarque 5, on en
déduit en multipliant par ρ que

ρg · v =−∂t (ρg z)−div(ρg zv). (0.53)

On dit que le poids est une force conservative. Le bilan local d’énergie (0.40) peut donc
se réécrire

∂t

(
1

2
ρ|v |2 +ρg z

)
+div

[(
1

2
ρ|v |2 +ρg z

)
v

]
= div(σ)v. (0.54)

ρg z est la densité d’énergie potentielle du fluide. On peut également définir l’énergie
mécanique comme la somme de l’énergie cinétique et de l’énergie potentielle :

Em(t ,ω) =
∫
ω

(
1

2
ρ|v |2 +ρg z

)
dx = Ec (t ,ω)+Ep (t ,ω). (0.55)

En appliquant le théorème de transport 1, on obtient que la dérivée de l’énergie
mécanique dans un système fermé ω(t ) ⊂Ω est donnée par

d

d t
Em(t ,ω(t )) =

∫
∂ω(t )

v ·σndS −
∫
ω(t )

σ : D(v)dx. (0.56)

L’énergie totale Etot est définie comme la somme des énergies mécanique Em et
interne Ei nt . Le premier principe de la thermodynamique énonce que dans un système
fermé, la dérivée de l’énergie totale est donnée par la puissance des forces extérieures
s’appliquant sur la paroi, plus le flux thermique entrant. Dans un ensemble ω(t ) ∈Ω
transporté par le fluide, cela se traduit par

d

d t
Em(t ,ω(t ))+ d

d t
Ei nt (t ,ω(t )) = d

d t
Etot (t ,ω(t )) = Ẇ +Q̇, (0.57)
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où Ẇ est défini par l’équation (0.46) et Q̇ est le flux thermique. Dans cette thèse, on se
concentrera uniquement sur l’étude de modèles qui ne prennent pas en compte les
effets thermiques, comme indiqué en début d’introduction. On supposera donc par la
suite que Q̇ = 0. On en déduit que la dérivée de l’énergie interne est donnée par

d

d t
Ei nt (t ,ω(t )) =

∫
ω(t )

σ : D(v). (0.58)

Remarque 7. En introduisant ρe la densité d’énergie interne, telle que

Ei nt (t ,ω) =
∫
ω
ρ(t , x)e(t , x)dx, (0.59)

on peut déduire de (0.58) l’équation locale d’évolution de l’énergie interne :

∂t (ρe)+div(ρev) =σ : D(v). (0.60)

On voit que le terme σ : D(v) correspond à un transfert d’énergie mécanique en énergie
interne. Ce terme peut être interprété comme un transfert d’échelle pour les fluctuations
de vitesse. En effet, il apparaît avec un signe − dans l’équation (0.51) des fluctuations
de la vitesse mésoscopique, et avec un signe + dans l’équation de l’énergie interne, qui
est en général une fonction croissante de la température (pouvant être définie comme la
moyenne des fluctuations de la vitesse microscopique).

1.5. Équations moyennées sur la profondeur
On s’intéresse dans cette section à un cas particulier, celui des équations moyen-

nées sur la profondeur. Ces équations sont utilisées notamment pour modéliser des
écoulements en couche mince, i.e. pour lesquels le ratio entre la hauteur typique de
l’écoulement et sa longueur typique est petit. C’est souvent le cas des avalanches de
neige, dont l’épaisseur est de l’ordre du mètre et la longueur peut atteindre plusieurs
centaines de mètres.

1.5.1. Hypothèses de l’écoulement et adimensionnement

On considère un fluide bidimensionel (d = 2) incompressible, de densitéρ constante,
s’écoulant sur un plan faisant un angle θ avec l’horizontale et soumis à la gravité,
comme représenté sur la Figure 3. On note x ∈ R et z ∈ R (resp. u ∈ R et w ∈ R) les
coordonnées (resp. vitesses) parallèle et perpendiculaire au plan incliné. On a donc
v = (u, w)T . La hauteur du fluide à l’instant t et à l’abscisse x est notée h(t , x). Dans
ces coordonnées, le tenseur des contraintes σ est noté

σ=
(
σxx σxz

σxz σzz

)
. (0.61)
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FIGURE 3. – Schéma d’écoulement sur plan incliné

Les équations de la masse et de la quantité de mouvement s’écrivent alors

∂xu +∂z w = 0,

∂t u +∂x(u2)+∂z(uw) = g sinθ+ 1

ρ
∂xσxx + 1

ρ
∂zσxz ,

∂t w +∂x(uw)+∂z(w 2) =−g cosθ+ 1

ρ
∂xσxz + 1

ρ
∂zσzz .

(0.62)

Le bilan local d’énergie cinétique (0.40) devient

∂t ec +div(ec v) = u

(
g sinθ+ ∂xσxx

ρ
+ ∂zσxz

ρ

)
+w

(
∂xσxz

ρ
+ ∂zσzz

ρ
− g cosθ

)
, (0.63)

avec

ρec = 1

2
ρ

(
u2 +w 2) (0.64)

la densité d’énergie cinétique. Ces équations sont valides à l’intérieur de l’écoulement,
i.e. dans la zone définie par 0 < z < h(x, t) (zone en gris dans la Figure 3). Elle sont
complétées par des conditions aux limites :

— en z = 0, conditions de non-glissement et non-pénétration :

u(0) = 0, w(0) = 0. (0.65)

— en z = h, la hauteur évolue selon la condition cinématique

∂t h +u(h)∂xh = w(h), (0.66)
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et la force extérieure exercée sur la surface libre est considérée nulle :

σ(h)n = 0, avec n = 1√
1+ (∂xh)2

(−∂xh
1

)
(0.67)

le vecteur unitaire sortant normal à la surface libre.

Remarque 8. Ces conditions aux limites sont les conditions les plus simples et les plus
fréquentes dans la littérature. On peut néanmoins trouver des conditions différentes
suivant les contextes. Par exemple, la condition de non-glissement peut être remplacée
par une condition de Navier (NAVIER 1823) lorsque la vitesse de glissement n’est pas
nulle, typiquement sur un fond lisse. De même, la force extérieure exercée à la surface
libre peut être modifiée en prenant en compte des effets tels qu’une pression extérieure,
l’influence du vent ou la tension de surface (ZADRZYŃSKA 2004). Ces effets ne seront pas
considérés ici.

Finalement, on fait l’hypothèse que l’écoulement est en couche mince. Pour mettre
en évidence cette hypothèse, on va adimensionner les équations. On introduit donc
h0 la hauteur typique, L0 la longueur typique de variation, et u0 la vitesse horizontale
typique. On peut alors introduire deux paramètres sans dimension : ε le paramètre de
couche mince, et F le nombre de Froude. Ils sont définis par

ε := h0

L0
et F := u0√

g h0
. (0.68)

L’hypothèse de couche mince (aussi appelée hypothèse des ondes longues) s’écrit
alors ε≪ 1. Le nombre de Froude F exprime le rapport entre l’inertie de l’écoulement
et la gravité. On supposera également que F =O(1), ce qui correspond aux régimes
d’avalanche étudiés expérimentalement et observés sur le terrain (F est typiquement
entre 5 et 10, voir ISSLER 2003). On définit les variables adimensionnées par

x̃ = x

L0
, z̃ = z

h0
, h̃ = h

h0
, ũ = u

u0
, w̃ = w

ϵu0
, t̃ = t

u0

L0
, σ̃= σ

ρg h0
. (0.69)

Les équations (0.62) peuvent alors se réécrire
∂x̃ ũ +∂z̃ w̃ = 0,

εF 2 [
∂t̃ ũ +∂x̃(ũ2)+∂z̃(ũw̃)

]= sinθ+ε∂x̃σ̃xx +∂z̃σ̃xz ,

ε2F 2 [
∂t̃ w̃ +∂x̃(ũw̃)+∂z̃(w̃ 2)

]=−cosθ+ε∂x̃σ̃xz +∂z̃σ̃zz .

(0.70)

La densité d’énergie cinétique adimensionnée vaut

ẽc = ec

u2
0

= 1

2

(
ũ2 +ε2w̃ 2) . (0.71)

Remarque 9. Dans ces coordonnées, on voit que
— L’équation de la masse reste inchangée,
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— La composante horizontale du poids est compensée à l’ordre zéro par la divergence
du tenseur des contraintes, les termes d’accélération horizontale apparaissent
seulement comme une correction d’ordre un en ε.

— La composante verticale du poids est compensée à l’ordre 0 et 1 par la divergence
du tenseur des contraintes, les termes d’accélération verticale apparaissent comme
une correction d’ordre deux en ε.

— La contribution de la vitesse verticale à l’énergie cinétique est d’ordre ε2 par
rapport à la contribution de la vitesse horizontale.

Enfin, les conditions aux limites (0.65) et (0.66) restent inchangées dans les nouvelles
variables, et la condition (0.67) devient{

σ̃xz(h̃)−εσ̃xx(h̃) = 0,

σ̃zz(h̃)−εσ̃xz(h̃) = 0.
(0.72)

1.5.2. Moyennisation sur la profondeur

On peut désormais moyenner les équations sur la profondeur, afin d’obtenir un
nouveau système pour les grandeurs qui nous intéressent. Ces grandeurs dépendent
uniquement des variables (t , x) puisque la variable z disparaît dans le processus de
moyennisation. Les grandeurs les plus utilisées dans les modèles d’écoulement à
couche mince sont la hauteur h et la vitesse horizontale moyenne U définie par

U (t , x) := 1

h(t , x)

∫ h(t ,x)

0
u(t , x, z)dz, Ũ := U

u0
. (0.73)

Comme on l’a vu précédemment, la forme conservative des équations est la plus adap-
tée pour écrire des bilans macroscopiques, grâce au théorème de transport 1. C’est
la même chose pour les équations moyennées sur la profondeur, qui peuvent s’inter-
préter comme un “bilan partiel", effectué sur une portion de fluide située au temps
t à l’abscisse x, de largeur infinitésimale dx et de hauteur h(t , x). Le lemme suivant
est l’analogue du théorème de transport de Reynolds dans le contexte des écoule-
ments moyennés sur la profondeur, et permet d’intégrer facilement des équations de
conservation.

Lemme 2. Pour tout champ f = f (t , x, z) ∈R, l’intégrale de l’opérateur de conservation
appliqué à f est donnée par∫ h

0

[
∂t f +div( f v)

]
dz = ∂t

(∫ h

0
f dz

)
+∂x

(∫ h

0
f udz

)
. (0.74)
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En effet, on a∫ h

0

[
∂t f +div( f v)

]
dz

=
∫ h

0

[
∂t f +∂x( f u)+∂z( f w)

]
dz

=∂t

(∫ h

0
f dz

)
+∂x

(∫ h

0
f udz

)
− f (h) [∂t h +u(h)∂xh −w(h)]− f (0)w(0)

et la formule s’obtient en utilisant les conditions cinématique (0.66) et de non péné-
tration (0.65).

En utilisant le lemme 2 et l’équation de conservation de la masse, on obtient une
équation d’évolution sur h, donnée par

∂t h +∂x(hU ) = 0. (0.75)

On reconnaît une équation de conservation, analogue à celle de la densité (0.20). En
effet, comme indiqué par l’équation (0.22), l’incompressibilité implique que le volume
du fluide ne change pas, ce qui se traduit ici par une conservation de la hauteur.

De même, on peut utiliser le lemme 2 pour moyenner l’équation de quantité de
mouvement horizontale et obtenir

∂t (hU )+∂x

(∫ h

0
u2dz

)
= g h sinθ+ 1

ρ

[
∂x

(∫ h

0
σxxdz

)
−σxx(h)∂xh +σxz(h)−σxz(0)

]
,

(0.76)
qu’on peut simplifier en utilisant la condition aux limites sur σ à la surface libre
(0.67) :

∂t (hU )+∂x

(∫ h

0
u2dz

)
= g h sinθ+ 1

ρ

[
∂x

(∫ h

0
σxxdz

)
−σxz(0)

]
. (0.77)

Pour calculer l’intégrale du carré de la vitesse horizontale, on peut procéder comme
dans la décomposition de l’énergie cinétique (0.49) et utiliser la vitesse moyenne pour
écrire : ∫ h

0
u2dz = hU 2 +

∫ h

0
(u −U )2dz. (0.78)

On obtient donc le système suivant de deux équations pour les variables h et U :
∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 +

∫ h

0
(u −U )2dz

)
= g h sinθ+ 1

ρ

[
∂x

(∫ h

0
σxxdz

)
−σxz(0)

]
.

(0.79)
Ces équations sont exactes, mais elle ne sont pas fermées. Pour obtenir un système
d’équations fermé, il faut pouvoir traiter les termes suivants :

1. Dans le membre de droite, les termes faisant intervenir le tenseurσ. La définition

31



Introduction – 2. Fluides parfaits

du tenseur σ dépend du type de fluide étudié et fait l’objet des deux prochaines
sections :
— Dans la section 2, on considère un fluide parfait, pour lequel le tenseur σ est

donné par un unique scalaire, la pression ;
— Dans la section 3, on considère des écoulements granulaires : granulaire

sec et suspension. Le tenseur σ est alors plus complexe et est défini par une
rhéologie frictionnelle.

2. Dans le membre de gauche, le second moment de la vitesse. Plusieurs méthodes
sont possibles pour traiter ce terme :
— La méthode la plus répandue consiste à négliger ce terme (voir par exemple

BRESCH 2009). C’est la méthode qui est utilisée pour obtenir les équations de
Saint Venant (cf paragraphe 2.1.2).

— La méthode utilisée dans cette thèse est de considérer ce terme comme
une troisième variable, indépendante de h et de U , appelée enstrophie ou
tenseur de Reynolds. L’équation de l’énergie est alors utilisée afin d’obtenir
une troisième équation d’évolution pour cette variable. Cette méthode est
décrite plus en détail dans la section 2.3 sur le tenseur de Reynolds.

Remarque 10. Les calculs précédents peuvent aussi être effectués dans le cas d’un
écoulement tridimensionnel. Aux coordonnées x et z s’ajoute alors la coordonnée trans-
verse y. Le champ de vitesse est noté v = (ux ,uy , w)T . Par souci de concision, on note
vh = (ux ,uy )T la vitesse horizontale et divh l’opérateur divergence dans les coordonnées
horizontales, tel que divh[(ax , ay )T ] = ∂x ax +∂y ay (avec l’extension habituelle pour un
tenseur d’ordre 2). Dans ce cas, les équations moyennés obtenues sont

∂t h +divh(hVh) = 0,

∂t (hVh)+divh

(
hVh ⊗Vh +

∫ h

0
(vh −Vh)⊗ (vh −Vh)dz

)T

=
(

g h sinθ
0

)
+divh

[
1

ρ

∫ h

0

(
σxx σx y

σx y σy y

)
dz

]T

− 1

ρ

(
σxz(0)
σy z(0)

)
.

(0.80)

2. Fluides parfaits
Un fluide parfait est un fluide qui s’écoule sans frottement interne, comme décrit

plus en détail dans le paragraphe suivant. Dans le cas d’un fluide parfait, on montre
que le tenseur des contraintes a une expression particulièrement simple. Par consé-
quent, la modélisation des fluides parfaits se fait par des équations "minimales",
c’est-à-dire avec le moins de termes possible. Si les domaines d’applications directes
des fluides parfaits sont assez restreints (superfluides, aérodynamique), leur étude
permet cependant de se concentrer sur la structure fondamentale des équations. Une
partie du travail de modélisation consiste alors à intégrer ces structures dans des
modèles plus complexes et à les concilier avec des termes additionnels modélisant
des propriétés du fluide réel étudié, comme par exemple de la dissipation d’énergie
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par frottement interne. Cette section est dédiée à la présentation des fluides parfaits
et à la structure des équations qui les décrivent, avec une attention particulière portée
sur le rôle joué par le tenseur de Reynolds. On introduit la notion de pression dans le
paragraphe 2.1. Le paragraphe suivant 2.2 donne une brève présentation des systèmes
hyperboliques de lois de conservation. Les paragraphes 2.1 et 2.2 contiennent des
éléments standards et les personnes ayant déjà connaissance de ces sujets peuvent
avancer directement aux paragraphes 2.3 et 2.4 présentant deux résultats obtenus
pendant la thèse. Le paragraphe 2.3 introduit les équations moyennées avec tenseur de
Reynolds. Le paragraphe 2.4 concerne le principe de Hamilton, avec une application
aux écoulements multiphasiques.

2.1. Pression
2.1.1. Définition de la pression et équations d’Euler

Considérons un ensembleω(t ) ⊂Ω transporté par le fluide. Comme expliqué dans le
paragraphe 1.3, cet ensemble est soumis à des forces surfaciques s’exerçant sur le bord
∂ω(t ). Ces forces ont une densité σn, avec σ le tenseur des contraintes et n le vecteur
normal sortant. On peut décomposer σn comme la somme de deux interactions : la
résistance normale, qui est la projection de σn selon n, et la force de frottement, qui
est la composante de σn tangente au bord ∂ω(t ) (Figure 4).

FIGURE 4. – Schéma des forces normales (à gauche) et tangentielles (à droite) s’exer-
çant sur ∂ω(t ).

Définition 2. On appelle fluide parfait un fluide pour lequel les forces de frottement
interne sont nulles, i.e. pour lequel σn est colinéaire à n en tout point. Par linéarité, il
existe un scalaire p ∈R tel que σ=−pId. Ce scalaire est appelé la pression du fluide et
représente une contrainte isotrope.

Remarque 11. Le signe “−" dans la définition de p est une convention pour que la
pression soit positive lorsque la résistance normale s’exerce vers l’intérieur du volume
considéré, comme c’est la cas dans la Figure 4 (par définition, la normale n est dirigée
vers l’extérieur).
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Pour un fluide parfait, l’équation d’évolution de la vitesse (0.37) s’écrit

∂t v + (v ·∇)v + 1

ρ
∇p = g. (0.81)

Cette équation est appelée équation d’Euler. Sa forme conservative est

∂t (ρv)+div(ρv ⊗ v +pId)T = ρg. (0.82)

Enfin, le bilan local d’énergie mécanique (0.54) devient

∂t

(
1

2
ρ|v |2 +ρg z

)
+div

[(
1

2
ρ|v |2 +ρg z

)
v

]
=−v ·∇p. (0.83)

Mathématiquement, il existe une distinction importante entre les modèles d’écou-
lements compressibles et incompressibles. En effet, les techniques d’analyse utilisées
pour étudier ces modèles sont différentes, ainsi que les méthodes numériques pour
leur résolution. L’importance de cette distinction peut être mise en évidence par le
rôle joué par la pression dans chacun des cas.

— Dans le cas des équations d’Euler incompressibles :
div(v) = 0,

∂tρ+ v ·∇ρ = 0,

∂t v + (v ·∇)v + 1

ρ
∇p = g,

(0.84)

la contrainte d’incompressibilité div(v) = 0 (voir définition 1) suffit à déterminer
la pression à partir du champ de vitesse. En effet, en appliquant l’opérateur
de divergence à l’équation d’évolution de la vitesse, on obtient une équation
elliptique pour la pression :

−div

(
1

ρ
∇p

)
= div[(v ·∇)v] . (0.85)

On verra dans le paragraphe 2.4 que le principe d’action stationnaire de Ha-
milton permet d’interpréter la pression comme le multiplicateur de Lagrange
associé à la contrainte d’incompressibilité.
Remarque 12. Dans le cas incompressible, l’identité v ·∇p = div(pv) permet de
réécrire l’équation de l’énergie mécanique (0.54) comme une équation de conser-
vation :

∂t

(
1

2
ρ|v |2 +ρg z

)
+div

[(
1

2
ρ|v |2 +ρg z +p

)
v

]
= 0. (0.86)

Pour un fluide parfait incompressible, l’énergie interne peut donc être prise égale
à zéro.

— Dans le cas compressible, une équation supplémentaire est nécessaire pour
obtenir un système d’équations fermé. On considère donc généralement une
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relation liant la pression aux autres variables décrivant l’état du fluide (densité,
température, salinité...). Cette relation est appelée une équation d’état. Ici, on
se concentre sur les effets mécaniques, et on supposera donc que la pression
dépend uniquement de la densité : p = p(ρ). Un fluide pour lequel cette équa-
tion d’état est vérifiée est appelé barotrope. Les équations d’Euler compressible
barotrope sont donc 

∂tρ+div(ρv) = 0,

∂t v + (v ·∇)v + 1

ρ
∇p(ρ) = g.

(0.87)

Elles forment un système hyperbolique de lois de conservations, notion définie
plus en détail dans le paragraphe 2.2. Ces équations admettent une loi de conser-
vation supplémentaire : la conservation de l’énergie totale. Pour l’obtenir, on
peut partir de l’équation d’évolution de l’énergie interne (0.60), qui s’écrit ici

∂t (ρe)+div(ρev) =σ : D(v) =−p(ρ)div(v), i.e. ∂t e + v ·∇e =−p(ρ)

ρ
div(v)

(0.88)
en utilisant la remarque 5. Or, en considérant une fonction e :R∗+ →R de classe
C 1 et en multipliant l’équation de conservation de la masse (0.23) par e ′(ρ), on
obtient formellement

∂t e(ρ)+ v ·∇e(ρ) =−ρe ′(ρ)div(v). (0.89)

On voit que les équations (0.88) et (0.89) sont équivalentes pourvu qu’on ait

p(ρ) = ρ2e ′(ρ). (0.90)

L’équation (0.90) est appelée relation de Maxwell. Si e(ρ) est défini par cette
relation, on obtient donc l’équation de conservation de l’énergie totale :

∂t

(
1

2
ρ|v |2 +ρg z +ρe(ρ)

)
+div

[(
1

2
ρ|v |2 +ρg z +ρe(ρ)+p(ρ)

)
v

]
= 0. (0.91)

On donne au paragraphe 2.4 une interprétation de la conservation de l’énergie
grâce au principe de Hamilton.

2.1.2. Pression hydrostatique et écoulements en couche mince

Une solution particulière des équations d’Euler est le fluide au repos, défini par v = 0.
La densité est donc indépendante du temps, ∂tρ = 0, et les forces extérieures sont
compensées par le gradient de pression uniquement. La pression est alors appelée
pression hydrostatique. Dans le cas d’un fluide soumis uniquement à la gravité, on
obtient

∇p = ρg, d’où p(zb)−p(za) =
∫ zb

za

ρg dz. (0.92)
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Notons que, pour obtenir cette dernière formule, il n’est pas nécessaire de supposer
que le fluide est entièrement au repos. Il suffit en effet de considérer un fluide pour
lequel l’accélération verticale est nulle.

Pour cette raison, la pression hydrostatique joue un rôle important dans le contexte
des écoulements en couche mince. En effet, considérons les équations adimension-
nées obtenues pour un écoulement incompressible en couche mince (0.70). Dans le
cas d’un fluide parfait s’écoulant sur un plan horizontal (θ = 0), on obtient

∂x̃ ũ +∂z̃ w̃ = 0,

F 2 [
∂t̃ ũ +∂x̃(ũ2)+∂z̃(ũw̃)

]=−∂x̃ p̃,

ε2F 2 [
∂t̃ w̃ +∂x̃(ũw̃)+∂z̃(w̃ 2)

]=−1−∂z̃ p̃.

(0.93)

En utilisant la troisième équation et la condition aux limites p̃(h̃) = 0, on voit que la
pression hydrostatique est une approximation de la pression à l’ordre ε2 :

p̃ = h̃ − z̃ +O(ε2). (0.94)

En négligeant les termes d’ordre ε2 et en revenant dans les variables initiales, on
obtient p = ρg (h− z). Les équations moyennées sur la profondeur de la masse et de la
quantité de mouvement horizontale (0.79) s’écrivent alors

∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 +

∫ h

0
(u −U )2dz + g h2

2

)
= 0.

(0.95)

Les équations de Saint Venant (SAINT-VENANT 1871) sont données par
∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 + g h2

2

)
= 0.

(0.96)

Elles sont obtenues en retirant la contribution de l’intégrale de (u −U )2 dans l’équa-
tion de la quantité de mouvement, ce qui revient à négliger les fluctuations de la
vitesse. Mathématiquement, ces équations ont la même structure que les équations
d’Euler compressible barotrope (0.87) en une dimension (sans accélération de la pe-
santeur dans le membre de droite). La hauteur h correspond à la densité ρ, et la vitesse
moyenne U correspond à la vitesse v . L’équation d’état est ici p(h) = g h2/2. Par consé-
quent, les équations de Saint Venant admettent également une loi de conservation de
l’énergie :

∂t

(
hU 2

2
+ g h2

2

)
+∂x

[(
hU 2

2
+ g h2

)
U

]
= 0. (0.97)

Remarque 13. Dans le cas d’un écoulement tridimensionnel, on obtient des équations
moyennées correspondant aux équations d’Euler compressible barotrope (0.87) avec
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d = 2 : 
∂t h +divh(hVh) = 0,

∂t (hVh)+divh

(
hVh ⊗Vh + g h2

2
Id

)T

= 0.
(0.98)

L’équation de l’énergie est

∂t

(
h|Vh |2

2
+ g h2

2

)
+divh

[(
h|Vh |2

2
+ g h2

)
Vh

]
= 0. (0.99)

Cette correspondance montre que dans le contexte des écoulements en couche
mince, les outils de la mécanique des fluides compressibles peuvent être utilisés pour
étudier des modèles décrivant des écoulements incompressibles. Dans la section
suivante, on donne une brève présentation du cadre mathématique adapté à l’étude
des écoulements compressibles.

2.2. Outils mathématiques pour l’analyse des écoulements
parfaits compressibles

Les équations d’Euler compressibles barotropes appartiennent à la famille des sys-
tèmes hyperboliques de lois de conservation. Comme son nom l’indique, cette famille
d’équations aux dérivées partielles est définie par deux critères algébriques : hyperbo-
licité et caractère conservatif, qui sont détaillés dans les prochains paragraphes. Ces
critères sont à la fois assez simples pour pouvoir être vérifiés dans des cas concrets,
assez restrictifs pour garantir le caractère bien posé des équations, et assez généraux
pour englober un grand nombre d’applications. En plus de leur utilité mathématique,
ils ont également des interprétations physiques. L’hyperbolicité permet ainsi de définir
des vitesses de propagation des ondes, et de garantir une propagation de l’informa-
tion à vitesse finie. Le caractère conservatif est lié à la conservation des grandeurs
physiques. La compréhension de ces critères permet enfin de construire des schémas
numériques stables adaptés à ce type d’équations. Ce dernier point ne sera pas abordé
en détail ici, on réfère donc aux livres de BOUCHUT 2004 ; GODLEWSKI et al. 2013 ;
LEVEQUE 2002.

2.2.1. Hyperbolicité

L’objectif de ce paragraphe est de présenter certains concepts clefs concernant les
équations hyperboliques. Par souci de simplicité, on se restreint au cas des systèmes à
coefficients réels sur l’espaceRd , mais la théorie a été aussi développée dans des cadres
plus généraux. Deux références pour ce paragraphe sont les livres de BENZONI-GAVAGE

et al. 2006 ; MÉTIVIER 2008. Considérons un système d’équations quasilinéaires donné
par

∂t Y +
d∑

i=1
Ai (Y )∂i Y = f +B(Y ), Y |t=0 = Y0, (0.100)
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avec Y :R+×Rd →Rn l’inconnue, Ai :Rn → Mn(R) des matrices dépendant de Y de
manière C∞, B :Rn →Rn de classe C∞ tel que B(0) = 0, ∂i := ∂/∂xi (i = 1, . . . ,d). Pour
Y ∈Rn et ξ ∈Rd , on définit

A(Y ,ξ) :=
d∑

i=1
Ai (Y )ξi (0.101)

le symbole de l’équation (0.100). La définition suivante est donnée par MÉTIVIER 2008.

Définition 3. On dit que le système (0.100) est hyperbolique lorsqu’il existe une matrice
n×n S(Y ,ξ), homogène de degré 0 en ξ, à coefficients C∞ en (Y ,ξ) pour ξ ̸= 0 et telle que

— S(Y ,ξ) est symétrique et définie positive,
— Pour tout (Y ,ξ), S(Y ,ξ)A(Y ,ξ) est symétrique.

S(Y ,ξ) est appelé un symétriseur symbolique associé au système (0.100).

Le théorème suivant énonce qu’un système hyperbolique est bien posé (MÉTIVIER

2008) :

Théorème 1. Soient s > 1+d/2 et T > 0. On suppose que le système (0.100) est hyper-
bolique. Si f ∈C 0([0,T ], H s(Rd )) et Y0 ∈ H s(Rd ), il existe T ′ > 0 et une unique solution
Y ∈C 0([0,T ′], H s(Rd )) à (0.100).

Remarque 14. La condition s > 1+d/2 est la condition minimale pour assurer que
l’inconnue Y ainsi que ses dérivées spatiales soient continues en espace. Cela permet de
définir sans ambiguïté le produit Ai (Y )∂i Y . On dit alors que Y est une solution forte.
Pour une telle solution, le temps d’existence est local. En effet, du fait de la nonlinéarité
des équations, des discontinuités peuvent apparaître en temps fini. Pour une solution
Y ∗ C∞ par morceaux, le produit Ai (Y ∗)∂i Y ∗ n’est pas défini aux points de disconti-
nuités de Y ∗ de manière univoque. En effet, Ai (Y ∗) est discontinu et ∂i Y ∗ est défini
au sens des distributions grâce à une mesure singulière supportée par l’ensemble des
points de discontinuités de Y ∗. La notion de système de lois de conservation permet
cependant de définir des solutions discontinues et d’étendre le temps d’existence au-delà
de l’apparition de discontinuités.

Remarque 15. La définition de l’hyperbolicité ne dépend que du symbole A(Y ,ξ). Par
conséquent, on se contente souvent d’étudier le système sans termes sources

∂t Y +
d∑

i=1
Ai (Y )∂i Y = 0, Y |t=0 = Y0. (0.102)

On dit que le système (0.102) est homogène. Par linéarité du symbole, on peut égale-
ment limiter l’étude au cas |ξ| = 1. Enfin, l’hyperbolicité est une notion invariante par
changement lisse d’inconnue. En effet, si Y = Y (Z ), Z est solution de

∂t Z +
d∑

i=1

[
∂Z Y −1 Ai (Y (Z ))∂Z Y

]
∂i Z = 0, (0.103)

et un symétriseur symbolique est donné par S̃(Z ,ξ) = (∂Z Y )T S(Y (Z ),ξ)∂Z Y .
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En pratique, pour vérifier l’hyperbolicité d’un système quasilinéaire, on peut utiliser
les critères suivants, qui sont plus restrictifs mais aussi plus simples à vérifier (et
toujours invariants par changement d’inconnue) :

Critère 1. On dit que le système (0.100) est symétrisable (au sens de Friedrichs) s’il existe
une matrice n ×n S(Y ) de classe C∞ telle que

— S(Y ) est symétrique définie positive,
— Pour tout (Y ,ξ), S(Y )A(Y ,ξ) est symétrique.

S(Y ) est appelé un symétriseur de (0.100). Dans le cas où on peut prendre S(Y ) = Id, on
dit que le système est symétrique.

Dans le cas d’un système symétrisable, la preuve du caractère bien-posé est plus
simple et a été obtenue avant la preuve générale de Métivier (cf KATO 1975). L’idée
de la preuve est de multiplier l’équation (0.100) par le symétriseur S(Y ), puis d’écrire
une estimation d’énergie en utilisant la symétrie afin d’effectuer une méthode de
point fixe (voir BENZONI-GAVAGE et al. 2006). Dans le cas général, il est nécessaire
d’utiliser le calcul para-différentiel afin de pouvoir symétriser les équations à l’aide du
symétriseur symbolique.

Critère 2. On dit que le système (0.100) est constamment hyperbolique si pour tout
(Y ,ξ), le symbole A(Y ,ξ) est diagonalisable à valeurs propres réelles, et si les muliplicités
des valeurs propres restent constantes, quelles que soient les valeurs de (Y ,ξ), ξ ̸= 0.

Pour montrer qu’un système constamment hyperbolique admet un symétriseur
symbolique, l’idée est d’écrire le symbole comme A(Y ,ξ) = Q(Y ,ξ)D(Y ,ξ)Q(Y ,ξ)−1,
avec D(Y ,ξ) une matrice diagonale et Q(Y ,ξ) une base de vecteurs propres. Le symé-
triseur symbolique peut alors être défini par S(Y ,ξ) = (Q(Y ,ξ)−1)T Q(Y ,ξ)−1. Le fait
d’avoir des multiplicités constantes empêche les valeurs propres de se croiser, ce qui
permet de choisir Q(Y ,ξ) de sorte que S(Y ,ξ) soit de classe C∞ (cf BENZONI-GAVAGE

et al. 2006).

Remarque 16. Par le calcul précédent, on peut construire formellement un symétriseur
symbolique dès que le symbole A(Y ,ξ) est diagonalisable à valeurs propres réelles.
Cependant, la continuité du symétriseur symbolique ainsi obtenu n’est pas garantie en
général. Un contre-exemple est présenté dans BENZONI-GAVAGE et al. 2006 dans le cas
n = 3, d = 2 comme exemple de Petrowski, pour lequel le symbole A(Y ,ξ) = A1ξ1 + A2ξ2

est diagonalisable à valeurs propres réelles, les matrices A1 et A2 sont constantes (avec
des coefficients égaux à 0 ou 1) et le système correspondant est mal posé. Pour cette raison,
la définition de l’hyperbolicité comme un système dont le symbole est diagonalisable à
valeurs propres réelles, parfois utilisée dans la littérature, n’a pas été retenue ici. Notons
que l’existence d’un symétriseur symbolique implique que le symbole est diagonalisable
à valeurs propres réelles. En effet, si S A est symétrique et S est symétrique définie positive,
alors

A = S−1S A = S−1/2 [
S−1/2(S A)S−1/2]S1/2 (0.104)

et donc A est semblable à la matrice symétrique S−1/2(S A)S−1/2.
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Exemple 8. Les équations d’Euler barotropes homogènes peuvent s’écrire sous la forme
(0.100) avec

Y =
(
ρ

v

)
∈Rd+1, A(Y ,ξ) =

(
v ·ξ ρξT

p ′(ρ)
ρ ξ (v ·ξ)I d

)
. (0.105)

Ces équations sont constamment hyperboliques dès que p ′(ρ) > 0. Pour |ξ| = 1, les
valeurs propres de A(Y ,ξ) sont v ·ξ±√

p ′(ρ) (multiplicité 1) et v ·ξ (multiplicité d −1).
Les équations sont également symétrisables : un symétriseur est donné par S(Y ) =
Diag(p ′(ρ)/ρ2,1, . . . ,1).

On peut interpréter physiquement les valeurs propres du symbole comme des vi-
tesses de propagation d’ondes dans le système. En effet, si on linéarise le problème
homogène (0.102) au voisinage d’une solution constante, notée Ȳ , on obtient l’équa-
tion suivante :

∂t Y +
d∑

i=1
Ai (Ȳ )∂i Y = 0. (0.106)

En cherchant des solutions de la forme Y = e i (k·x−ωt ), on obtient que la fréquence ω
et le vecteur d’onde k sont liés par la relation de dispersion det[A(Ȳ ,k)−ωI d ] = 0. En
particulier, si les valeurs propres du symbole A(Ȳ ,ξ) sont bornées sur la sphère |ξ| = 1,
c’est aussi le cas des vitesses de phase ω/|k|. L’information se propage donc à vitesse
finie. Les schémas numériques préservant cette propriété ont alors l’avantage d’être
facilement parallélisables.

Pour finir, on donne deux définitions supplémentaires en lien avec l’hyperbolicité.

Définition 4. On dit qu’un système quasilinéaire de la forme (0.100) est strictement
hyperbolique si le symbole associé est diagonalisable avec des valeurs propres toutes
réelles et de multiplicité 1.

Définition 5. On dit qu’un système quasilinéaire de la forme (0.100) est faiblement
hyperbolique si le spectre du symbole est inclus dans R.

2.2.2. Lois de conservation

Définition 6. On dit que le système (0.100) est sous forme conservative s’il existe des
champs de vecteurs F1(Y ), . . . ,Fd (Y ) :Rn →Rn tels que, pour i = 1, . . . ,d, on ait Ai (Y ) =
∂Y Fi (Y ). L’équation (0.100) se réécrit alors

∂t Y +
d∑

i=1
∂i Fi (Y ) = f +B(Y ), Y |t=0 = Y0. (0.107)

Les champs de vecteurs Fi correspondent au flux de la quantité conservée Y .

On considère désormais le cas homogène

∂t Y +
d∑

i=1
∂i Fi (Y ) = 0. (0.108)
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Dans l’article FRIEDRICHS et al. 1971, Friedrichs et Lax montrent que, si le système
(0.108) satisfait une loi de conservation supplémentaire, de type

∂tη(Y )+div( j (Y )) = 0, (0.109)

avec η une fonction strictement convexe, alors le système est symétrisable, et un
symétriseur est donné par la matrice Hessienne de η. η est alors appelé une entropie
du système, et j le flux d’entropie correspondant. Cela complète un résultat antérieur
de GODUNOV 1961 qui montre que pour une certaine classe de système de lois de
conservation dérivant de potentiels (incluant les équations d’Euler), une loi de conser-
vation supplémentaire est automatiquement satisfaite et les équations peuvent être
symétrisées. Dans le cadre des systèmes de lois de conservation, l’existence d’une
entropie est donc un critère supplémentaire permettant de montrer la symétrisabilité
(et donc l’hyperbolicité).

Exemple 9. Les équations d’Euler barotropes homogènes peuvent s’écrire comme un
système de lois de conservation (0.108), avec

Y =
(
ρ

ρv

)
∈Rd+1, F (Y ) =

(
ρvT

ρv ⊗ v +p(ρ)Id

)
∈ Md+1,d (R) (0.110)

et Fi (Y ) la i -ème colonne de F (Y ). Elles admettent comme équation de conservation
supplémentaire la conservation de l’énergie totale :

∂t

(
1

2
ρ|v |2 +ρe(ρ)

)
+div

[(
1

2
ρ|v |2 +ρe(ρ)+p(ρ)

)
v

]
= 0. (0.111)

La densité d’énergie totale est une entropie pour les équations d’Euler. En effet, on a

Hess(η)(Y ) =
( |q|2
ρ3 +2e ′(ρ)+ρe ′′(ρ) −qT

ρ2

− q
ρ2

1
ρ

Id

)
, où Y =

(
ρ

q

)
et η(Y ) = |q|2

2ρ
+ρe(ρ).

(0.112)
Par le critère de Sylvester, la matrice hessienne est définie positive si et seulement si son
déterminant est positif, i.e. si et seulement si 2e ′(ρ)+ρe ′′(ρ) > 0. Cela revient à dire
que la densité volumique d’énergie interne ρ 7→ ρe(ρ) est strictement convexe, ou, en
utilisant la relation de Maxwell p(ρ) = ρ2e ′(ρ), que la pression est strictement croissante
(p ′(ρ) > 0). Le critère d’hyperbolicité p ′(ρ) > 0 obtenu au paragraphe précédent peut
donc être reformulé comme un critère de convexité de l’énergie totale.

Remarque 17. Pour un système de lois de conservation (0.107), on peut définir des
solutions faibles. Ces solutions sont en général moins régulières que les solutions fortes,
et peuvent admettre des discontinuités. En particulier, elles peuvent permettre de pro-
longer le temps d’existence d’une solution initialement régulière après l’apparition de
discontinuités. Cependant, les solutions faibles ne sont pas uniques en général. Les
paires entropies-flux d’entropie du système fournissent un critère de sélection pour ces
solutions. On dit qu’une solution est entropique si elle satisfait au sens faible l’inéqua-
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tion
∂tη(Y )+div( j (Y )) ≤ 0, (0.113)

pour toute paire d’entropie-flux d’entropie (η, j ). Un théorème de KRUŽKOV 1970 (voir
aussi SERRE 1999) assure l’existence et l’unicité des solutions entropiques pour une
donnée initiale bornée dans le cas d’une équation scalaire (n = 1).

Les solutions faibles jouent également un rôle important dans la résolution numé-
rique des systèmes de lois de conservation. Elles sont en effet au coeur de la méthode
des volumes finis, proposée par Godunov (GODUNOV et BOHACHEVSKY 1959). Cette
méthode consiste à approcher la solution recherchée par une fonction constante sur
chaque maille à chaque pas de temps, et à résoudre un problème de Riemann (problème
de Cauchy associé au système de lois de conservation avec une donnée initiale constante
par morceaux) pour obtenir la solution au pas de temps suivant.

Pour toutes les raisons décrites ici, le cadre des systèmes hyperboliques de lois de
conservation est bien adapté à la modélisation. Il permet en effet d’utiliser les pro-
priétés venant de la physique pour garantir de bons comportements mathématiques
pour les solutions. Comme illustré précédemment, ce cadre a beaucoup été développé
dans le contexte des équations d’Euler compressibles. Dans la suite, on va utiliser
ces éléments théoriques comme base d’analyse pour des modèles plus complexes
incluant un tenseur de Reynolds, en lien avec les avalanches.

2.3. Tenseur de Reynolds
Les équations de Reynolds constituent un modèle déterministe de turbulence. De

nombreux autres modèles existent et ne seront pas discutés ici ; on renvoie par
exemple aux références MOHAMMADI et al. 1993 ; POPE 2001 ; WILCOX et al. 1998.
Dans ce paragraphe, on montre comment dériver les équations de Reynolds dans
le cas des écoulements moyennés sur la profondeur, puis on donne une liste des
propriétés mathématiques de ces équations. Une de ces propriétés mathématiques
(le résultat 1) constitue l’une des contributions de cette thèse.

2.3.1. Dérivation dans le cadre d’un écoulement moyenné

Reprenons les équations moyennées sur la profondeur pour un fluide parfait bidi-
mensionnel s’écoulant sur un plan incliné horizontal (0.95) :

∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 +

∫ h

0
(u −U )2dz + g h2

2

)
= 0

(0.114)

Ces équations sont obtenues en faisant l’hypothèse que la pression est hydrostatique,
ce qui est vrai jusqu’à l’ordre ε2 dans l’asymptotique des écoulements en couche
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mince. On définit le tenseur de Reynolds, noté dans la suite P , par

P := 1

h

∫ h

0
(u −U )2dz. (0.115)

Il s’ensuit que P ≥ 0, et P = 0 si et seulement si le profil de vitesse u est indépendant
de z. Avec la condition u(0) = 0, on en déduit que P > 0, sauf à l’arrêt où P = 0. Le
système (0.114) peut se réécrire

∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 +hP + g h2

2

)
= 0

(0.116)

On obtient un système de deux équations et trois inconnues (h,U ,P ). Une troisième
équation est donc nécessaire pour décrire l’évolution de P . Pour obtenir cette équation,
on va moyenner le bilan d’énergie (0.86)

∂t

(
1

2
ρ|v |2 +ρg z

)
+div

[(
1

2
ρ|v |2 +ρg z +p

)
v

]
= 0. (0.117)

Pour cela, on commence par réécrire ce bilan en négligeant les termes d’ordre ε2,
i.e. la contribution de la vitesse verticale dans l’énergie cinétique et la partie non-
hydrostatique de la pression. On obtient

∂t

(
1

2
ρu2

)
+div

[(
1

2
ρu2 +ρg z +pH

)
v

]
= 0, (0.118)

avec pH = ρg (h − z) la pression hydrostatique. On peut désormais intégrer cette
équation sur la profondeur. Le calcul de l’équation moyennée se fait en deux étapes :

— Les termes faisant intervenir l’énergie cinétique sont calculés grâce au lemme
2 :∫ h

0

[
∂t

(
1

2
ρu2

)
+div

(
1

2
ρu2v

)]
dz = ∂t

(∫ h

0

1

2
ρu2dz

)
+∂x

(∫ h

0

1

2
ρu3dz

)
. (0.119)

En utilisant la décomposition u = u −U +U et la définition de P (0.115), on
obtient∫ h

0
u2dz = hU 2 +hP et

∫ h

0
u3dz = hU 3 +3hPU +

∫ h

0
(u −U )3dz. (0.120)

— Il reste à calculer l’intégrale de div[(ρg z +pH )v]. Pour cela, on voit tout d’abord
que ρg z +pH = ρg h. On va encore une fois utiliser le lemme 2 :∫ h

0

[
∂t (g h)+div(g hv)

]
dz = ∂t

(∫ h

0
g hdz

)
+∂x

(∫ h

0
g hudz

)
= ∂t

(
g h2)+∂x

(
g h2U

)
,

(0.121)
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d’où∫ h

0
div(g hv)dz = ∂t

(
g h2)+∂x

(
g h2U

)−∫ h

0
∂t (g h)dz = ∂t

(
g h2

2

)
+∂x(g h2U ).

(0.122)
L’équation moyennée de l’énergie cinétique peut donc s’écrire

∂t

(
hU 2

2
+ hP

2
+ g h2

2

)
+∂x

(
hU 3

2
+ 3hPU

2
+ g h2U + 1

2

∫ h

0
(u −U )3dz

)
= 0. (0.123)

À l’aide des équations de conservation satisfaites par h et hU , on en déduit l’équation
d’évolution de P :

∂t P +U∂xP +2P∂xU + 1

h
∂x

(∫ h

0
(u −U )3dz

)
= 0. (0.124)

Pour obtenir un système d’équations fermées sur les variables (h,U ,P ), il faut donner
une expression pour l’intégrale de (u −U )3. Une méthode exacte serait de dériver
une équation d’évolution pour cette quantité. On obtiendrait ainsi une quatrième
équation, faisant intervenir l’intégrale de (u −U )4. En continuant récursivement, on
arriverait à un système infini d’équations couplées. Pour des raisons pratiques, cette
méthode ne sera pas utilisée ici, et on se contentera des variables (h,U ,P ). Pour
simplifier, on fera ici l’hypothèse que le moment d’ordre 3 est négligeable, et on le
prendra égal à zéro. Notons cependant que d’autres fermetures sont possibles. Par
exemple, pour dériver le modèle d’avalanche présenté dans le paragraphe 3.2, le
moment d’ordre 3 est exprimé de manière consistante comme un terme source en
fonction des trois autres variables (voir chapitre 3). Ici, le modèle obtenu est donc

∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 +hP + g h2

2

)
= 0,

∂t P +U∂xP +2P∂xU = 0.

(0.125)

Ce modèle admet la conservation de l’énergie

∂t

(
hU 2

2
+ hP

2
+ g h2

2

)
+∂x

(
hU 3

2
+ 3hPU

2
+ g h2U

)
= 0. (0.126)

Remarque 18. Dans le cas d’un écoulement tridimensionnel moyenné sur la profondeur,
P est un tenseur d’ordre 2, défini par

P := 1

h

∫ h

0
(vh −Vh)⊗ (vh −Vh)dz. (0.127)

Il s’ensuit que P est un tenseur symétrique et positif. P est même défini positif, sauf dans
le cas particulier où les profils de vitesse ux(z) et uy (z) sont égaux à une constante près.
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Le système d’équations satisfaites par les variables (h,U ,P ) a été obtenu par Teshukov
(TESHUKOV 2007) et s’écrit

∂t h +divh(hVh) = 0,

∂t (hVh)+divh

(
hVh ⊗Vh +hP + g h2

2
Id

)T

= 0,

∂t P + (Vh ·∇h)P + ∂Vh

∂xh
P +P

(
∂Vh

∂xh

)T

= 0.

(0.128)

Notons que dans ce dernier cas, trois équations scalaires sont nécessaires pour décrire
l’évolution de P. Moyenner l’équation de l’énergie n’est donc pas suffisant pour détermi-
ner l’évolution de P, il faut alors intégrer l’équation d’évolution de u⊗u (voir TESHUKOV

2007). Le système admet une équation de conservation de l’énergie totale, donnée par

∂t

(
h|Vh |2

2
+ Tr(hP )

2
+ g h2

2

)
+divh

[(
h|Vh |2

2
+ Tr(hP )

2
+hP + g h2

)
Vh

]
= 0. (0.129)

2.3.2. Structure des équations

On présente ici une analyse de la structure des équations moyennées de Reynolds.
Cette analyse est complétée par la dernière proposition du paragraphe (résultat 1),
qui est un résultat original obtenu pendant la thèse. On considère donc le système
d’équations quasilinéaires donné par

∂t h +div(hV ) = 0,

∂t (hV )+div
(
hV ⊗V +hP +p(h)Id

)T = 0,

∂t P + (V ·∇)P + ∂V

∂x
P +P

(
∂V

∂x

)T

= 0.

(0.130)

On se place en dimension d = 1,2 ou 3. En dimension d = 1 ou 2, on retrouve les
équations moyennées sur la profondeur obtenues par TESHUKOV 2007 en prenant
p(h) = g h2/2 (voir (0.125) et (0.128)). Il est également intéressant de considérer le
cas d = 3 avec une loi de pression p(h) générale car il apparaît dans le contexte des
écoulements turbulents lorsqu’on effectue une moyenne de Reynolds. La variable h
joue alors le rôle de la densité moyennée et est parfois notée ρ̄. La vitesse V correspond
à la vitesse de l’écoulement moyen, obtenue en prenant la moyenne de Favre de la
vitesse instantanée. Le tenseur P est obtenu en prenant la moyenne de Favre des
corrélations d’ordre 2 des fluctuations de vitesse. Ces équations dans le contexte de la
turbulence sont présentées dans les références MOHAMMADI et al. 1993 ; POPE 2001 ;
WILCOX et al. 1998. Pour cette raison, on considère ici le système (0.130), qui est un
peu plus général que les équations obtenues précédemment, mais dont l’étude n’est
pas plus complexe. Ce système admet la conservation de l’énergie totale

∂t (hetot )+div[(hetot +p(h)+hP )V ] = 0, avec etot := |V |2
2

+e(h)+ TrP

2
, (0.131)
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et e(h) défini par la relation de Maxwell h2e ′(h) = p(h). Une autre loi de conservation
est

∂t (hψ)+div(hψV ) = 0, avec ψ := detP

h2
. (0.132)

On appelleψ l’enstrophie, qui est reliée en dimension 1 au carré de la vorticité. Puisque
l’enstrophie ψ est transportée, si initialement ψ> 0, alors cette inégalité reste vraie
pour tout temps. De même, la symétrie du tenseur P est préservée par (0.130). On en
déduit la proposition suivante :

Proposition 3. Si initialement P est symétrique défini positif, alors P est symétrique
défini positif pour tout temps.

Cette proposition nous permet de restreindre l’étude au cas P symétrique défini
positif. On a également une autre conséquence de la conservation de l’enstrophie et
du fait que P est un scalaire en dimension 1 :

Proposition 4. En dimension d = 1, le système (0.130) écrit dans les variables (h,hV ,hψ)
est un système de lois de conservations, qui admet en plus la conservation de l’énergie
(0.131).

Dans ces variables, la densité volumique d’énergie totale s’écrit hetot = hV 2/2+
he(h)+h3ψ/2. L’énergie est donc linéaire en hψ, et n’est donc pas strictement convexe
en ces variables. Cependant, l’énergie est une entropie pour le système écrit dans
les variables conservatives (h,hV ,hψ1/3). En dimension supérieure, on perd cette
propriété, comme montré dans GAVRILYUK, IVANOVA et al. 2018 :

Proposition 5. Les seules lois de conservations indépendantes satisfaites par le système
(0.130) sont celles de conservation de la masse, de la quantité de mouvement, de l’énergie
totale et de l’enstrophie. En particulier, si d ≥ 2, les équations (0.130) ne peuvent pas
être écrites comme un système de lois de conservation.

Quand d ≥ 2, on ne peut donc pas utiliser d’entropie pour montrer que les équations
sont symétrisables, et donc hyperboliques. Il faut donc étudier directement le symbole
du système (0.130). Concernant l’hyperbolicité, on peut énoncer le résultat suivant
(voir BERTHON, COQUEL et al. 2002 ; TESHUKOV 2007) :

Proposition 6. Les équations (0.130) sont constamment hyperboliques pour tout h >
0,V ∈Rd , P = P T > 0 avec une loi de pression qui vérifie p ′(h) ≥ 0.

Voici quelques éléments de preuve. Le système (0.130) peut être mis sous la forme
quasilinéaire

∂t Y +
d∑

i=1
Ai (Y )∂i Y , avec Y =

h
V
P̃

 ∈R1+d+d(d+1)/2. (0.133)
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Le symbole A(Y ,ξ) est donné pour ξ ∈Rd par une matrice par blocs compatible avec
Y :

A(Y ,ξ) =
d∑

i=1
Ai (Y )ξi =

 V ·ξ hξT 0
1
h

[
P +p ′(h)

]
ξ (V ·ξ)Id C (ξ)

0 D(ξ) (V ·ξ)Id

 . (0.134)

En dimension 1, on a P̃ = P > 0, C (ξ) = ξ, D(ξ) = 2Pξ. En dimension 2 et 3, on utilise la
symétrie de P pour écrire d(d +1)/2 équations d’évolution pour les coefficients de P ,
notés (Pi j )1≤i , j≤d , au lieu de d 2 équations. En dimension d = 2, on a

P̃ =
P11

P12

P22

 , C (ξ) =
(
ξ1 ξ2 0
0 ξ1 ξ2

)
, D(ξ) =

2(Pξ)1 0
(Pξ)2 (Pξ1)

0 2(Pξ)2

 , (0.135)

où (Pξ)i désigne le i -ème coefficient du vecteur Pξ ∈Rd . En dimension d = 3,

P̃ =



P11

P12

P13

P22

P23

P33

 , C (ξ) =
ξ1 ξ2 ξ3 0 0 0

0 ξ1 0 ξ2 ξ3 0
0 0 ξ1 0 ξ2 ξ3

 , (0.136)

et

D(ξ) =



2(Pξ)1 0 0
(Pξ)2 (Pξ)1 0
(Pξ)3 0 (Pξ)1

0 2(Pξ)2 0
0 (Pξ)3 (Pξ)2

0 0 2(Pξ)3

 . (0.137)

Pour ξ ∈Rd avec |ξ| = 1, le polynôme caractéristique du symbole A(Y ,ξ) est donné par

χA(Y ,ξ)(λ) = [
(V ·ξ−λ)2 −3ξT Pξ−p ′(h)

][
(V ·ξ−λ)2 −ξT Pξ

]d−1
(V ·ξ−λ)1+d(d−1)/2.

(0.138)
Par conséquent, les valeurs propres sont données par

λp± :=V ·ξ±
√

3ξT Pξ+p ′(h), (multiplicité 1),

λP± :=V ·ξ±
√
ξT Pξ, (multiplicité d −1),

λV :=V ·ξ (multiplicité 1+d(d −1)/2).

Pour montrer que le symbole est diagonalisable, il faut exhiber une base de vecteurs
propres correspondants. L’existence d’au moins un vecteur propre pour chaque valeur
propre étant garantie, il suffit de traiter les valeurs propres λP± et λV . Pour la valeur
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propre λP±, les vecteurs propres s’écrivent

XP± =

 0

±
√
ξT Pξξ⊥

D(ξ)ξ⊥

 , (0.139)

avec ξ⊥ un vecteur orthogonal à ξ. Pour la valeur propre λV , un vecteur propre est
donné par

XV =
−h

0
α

 , (0.140)

avec α ∈ Rd(d+1)/2 tel que C (ξ)α= Pξ+p ′(h)ξ, et d(d −1)/2 autres vecteurs propres
indépendants peuvent s’écrire

XV ′ =
0

0
β

 , (0.141)

où β ∈ Rd(d+1)/2 tel que C (ξ)β = 0. En effet, C (ξ) ∈ Md ,d(d+1)/2(R) est une matrice
surjective, donc son noyau est de dimension d(d −1)/2 et les vecteurs XV et XV ′ sont
bien définis.

Pour compléter ces propriétés, on peut se demander si le système (0.130) est symé-
trisable au sens de Friedrichs en dimension 2 et 3. En effet, le caractère non conservatif
des équations n’empêche pas la symétrisabilité a priori. Un premier résultat de cette
thèse répond à cette question :

RÉSULTAT 1 (DELÉAGE 2024)

Soit d = 2 ou 3. On suppose que h > 0 et que P = P T > 0. Alors les deux proposi-
tions suivantes sont équivalentes :

1. le système (0.130) est symétrisable au sens de Friedrichs,

2. la pression est constante : p ′(h) = 0, ou le tenseur P est une matrice
scalaire, i.e. il existe λ=λ(t , x) ∈R tel que P =λId.

Notons que, par ce qui précède, cette proposition est également vérifiée lorsque
d = 1. Plus de détails concernant ce résultat ainsi qu’une preuve détaillée sont donnés
dans le chapitre 1.

2.4. Principe de Hamilton
Dans les paragraphes précédents, on a présenté des éléments d’analyse de la struc-

ture mathématique de plusieurs systèmes d’équations différents (équations d’Euler
compressibles barotropes, équations moyennées de Reynolds). Ces systèmes pos-
sèdent des propriétés communes : conservation de la masse, de la quantité de mou-
vement et de l’énergie totale, hyperbolicité. On peut se demander si ces similarités ont
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une origine commune. Une réponse partielle est donnée par le principe de Hamilton,
qui est présenté dans ce paragraphe. Le principe de l’action stationnaire de Hamilton,
aussi appelé principe de Hamilton ou principe variationnel, est un outil théorique qui
permet notamment de

— Présenter de manière unifiée un grand nombre de systèmes d’équations, dont
les équations d’Euler et les équations de Reynolds,

— Dériver un système complet d’équations à partir d’une unique grandeur scalaire,
appelée le Lagrangien,

— Garantir que le système ainsi obtenu satisfasse des lois de conservation adé-
quates.

Pour toutes ces raisons, le principe de Hamilton peut se révéler précieux pour la
modélisation. Dans ce paragraphe, on donne une présentation de ce concept, puis on
montre un exemple d’application dans le cadre des écoulements multiphasiques. Cet
exemple d’application est un résultat original obtenu pendant la thèse.

2.4.1. Présentation du principe variationnel

On considère un milieu continu occupant un domaine Ω⊂Rd , dont le mouvement
est décrit par des trajectoires x(t , X ) ∈Ω, comme expliqué dans le paragraphe 1.1. La
densité est définie comme précédemment dans les coordonnées lagrangiennes par

ρl J = ρ|t=0, où J = det
∂x

∂X
, (0.142)

(la notation f l est introduite en 1.1), ce qui revient à imposer une équation de conser-
vation pour la densité eulérienne ρ telle que ρ(t , x(t , X )) = ρl (t , X ). On définit alors la
densité lagrangienne L par

L := 1

2
ρ|v |2 −ρeg , (0.143)

avec eg l’énergie potentielle généralisée, incluant la somme des énergies potentielle,
interne et éventuellement d’autres contributions. Notons que la densité lagrangienne
est donc la différence entre l’énergie cinétique et l’énergie potentielle généralisée,
contrairement à l’énergie totale qui est la somme de ces deux quantités. Le Lagrangien
associé est défini comme l’intégrale de la densité lagrangienne sur tout le domaine :

L =
∫
Ω

L dx (0.144)

Finalement, l’action est définie comme l’intégrale du Lagrangien entre l’instant initial
t = 0 et un instant final T > 0 fixé :

A =A [x] =
∫ T

0
Ldt =

∫ T

0

∫
Ω

L dxdt , (0.145)

la notation A [x] signifiant ici que l’action est considérée comme une fonctionnelle
dépendant de la trajectoire. Pour ε suffisamment proche de zéro etφ ∈C∞

c [(0,T )×Ω]d ,
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on considère une perturbation de la trajectoire xε donnée par

xε = x +εφ. (0.146)

Notons que φ étant à support compact, l’état initial, l’état final et le comportement du
milieu sur le bord ∂Ω ne sont pas perturbés. L’action correspondante est notée Aε :=
A [x+εφ]. Le principe de l’action stationnaire de Hamilton énonce que les trajectoires
empruntées par les particules sont celles pour lesquelles l’action est stationnaire, i.e.
pour lesquelles on a, pour toute perturbation φ ∈C∞

c [(0,T )×Ω]d ,

δA = 0, (0.147)

où la variation δ f est définie pour une quantité fε dépendant de ε par

δ f := (∂ε fε)|ε=0. (0.148)

Exemple 10. Équations d’Euler compressibles barotropes.
Considérons la densité lagrangienne

L =L (ρ, v, z) = 1

2
ρ|v |2 −ρg z −ρe(ρ). (0.149)

La variation de l’action correspondante est donnée par

δA =
∫ T

0

∫
Ω

(
∂L

∂ρ
δρ+ ∂L

∂v
δv

)
dxdt . (0.150)

Il suffit donc de calculer les variations de la densité et de la vitesse pour calculer celle
de l’action. Pour cela, on introduit ζ la variation de la trajectoire dans les coordonnées
eulériennes, i.e. ζl =φ= δx. La relation ρl

ε Jε = ρ0 permet de calculer

δ(ρl ) =−ρl δJ

J
=−ρl [div(ζ)]l , (0.151)

d’où, en utilisant la correspondance

δ( f l ) = (δ f )l +δx · (∇ f )l , (0.152)

on déduit que
δρ =−div(ρζ). (0.153)

De même, la relation δ(v l ) = ∂tδx donne

δv + (ζ ·∇)v = ∂tζ+ (v ·∇)ζ, i.e. δv = ∂tζ+ (v ·∇)ζ− (ζ ·∇)v. (0.154)
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La variation de l’action peut donc s’écrire

δA =
∫ T

0

∫
Ω

[(
g z +e(ρ)+ρe ′(ρ)− 1

2
|v |2

)
div(ρζ)+ρv · (∂tζ+ (v ·∇)ζ− (ζ ·∇)v)

]
dxdt .

(0.155)
Après intégration par parties, on obtient

δA =−
∫ T

0

∫
Ω

[
∂t (ρv)+div(ρv ⊗ v +p(ρ)I d)T +ρ∇(g z)

] ·ζdxdt . (0.156)

La variation de l’action devant s’annuler pour tout ζ, on en déduit l’égalité

∂t (ρv)+div(ρv ⊗ v +p(ρ)I d)T =−ρ∇(g z). (0.157)

On retrouve le bilan de quantité de mouvement des équations d’Euler barotrope. On dit
que ce bilan est l’équation d’Euler-Lagrange associée au Lagrangien.

Remarque 19. Dans l’exemple précédent, l’équation de la quantité de mouvement joue
un rôle différent de celui de l’équation de la masse. En effet, l’équation de la masse
n’est pas une équation d’Euler-Lagrange, mais plutôt une contrainte qui est spécifiée
dès le départ. L’équation (0.142) montre que cette contrainte peut être intégrée dans les
coordonnées lagrangiennes. On parle alors de contrainte holonome.

Remarque 20. Dans le cas d’un fluide incompressible, la contrainte div(v) = 0 est une
contrainte holonome. En effet, elle s’écrit simplement dans les coordonnées lagran-
giennes J = 1. Les équations d’Euler incompressibles peuvent alors être obtenues en
appliquant le principe de Hamilton à la densité lagrangienne

L = 1

2
ρ|v |2 +p

(
1− 1

K

)
(0.158)

avec K tel que K l = J . La pression p est vue ici comme une variable indépendante de la
trajectoire. L’équation d’Euler-Lagrange associée à cette variable donne la contrainte
d’incompressibilité div(v) = 0. On dit que la pression est le multiplicateur de Lagrange
associé à cette contrainte.

Le théorème suivant, appelé théorème de Noether (NOETHER 1918), est un résultat
fondamental qui permet de donner une interprétation supplémentaire aux lois de
conservation d’un système obtenu par principe variationnel.

Théorème 2. À toute transformation infinitésimale qui laisse la densité lagrangienne
invariante correspond une quantité conservée.

Exemple 11. On a les correspondances suivantes :
— La conservation de l’énergie totale ρ|v |2/2+ρeg correspond à l’invariance du La-

grangien par translation temporelle et est vérifiée dès que la densité lagrangienne
ne dépend pas explicitement du temps t .
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— La conservation de la quantité de mouvement ρv correspond à l’invariance du
Lagrangien par translation spatiale et est vérifiée dès que la densité lagrangienne
ne dépend pas explicitement des coordonnées spatiales. Dans l’exemple précédent,
la densité lagrangienne L = ρ|v |2/2 − ρg z − ρe(ρ) dépend de la coordonnée
verticale z, donc la composante verticale de la quantité de mouvement n’est pas
conservée (il y a le terme source −ρg dans le membre de droite). En revanche, L

ne dépend pas des coordonnées horizontales, donc la quantité de mouvement
horizontale ρvh est conservée.

Le résultat suivant de GAVRILYUK et GOUIN 2020 traite le cas des équations moyen-
nées de Reynolds.

Proposition 7. Le système (0.130) peut être obtenu par le principe de Hamilton. Plus
précisément, l’équation de la quantité de mouvement

∂t (ρv)+div(ρv ⊗ v +p(ρ)Id+ρP )T = 0 (0.159)

est l’équation d’Euler-Lagrange associée à la densité lagrangienne

L = 1

2
ρ|v |2 −ρe(ρ)− 1

2
Tr(ρP ), (0.160)

sous les contraintes de conservation de la masse

∂tρ+div(ρv) = 0, (0.161)

et d’évolution de P

∂t P + (v ·∇)P + ∂v

∂x
P +P

(
∂v

∂x

)T

= 0. (0.162)

Remarque 21. Contrairement à la contrainte de conservation de la masse, la contrainte
d’évolution de P n’est pas intégrable dans les coordonnées lagrangiennes. On parle
alors de contrainte non holonome. Cependant, on peut exprimer la variation de P par
l’équation (cf GAVRILYUK et GOUIN 2020)

δP + (ζ ·∇)P + ∂ζ

∂x
P +P

(
∂ζ

∂x

)T

= 0. (0.163)

C’est cette relation qui permet d’obtenir l’équation d’Euler-Lagrange.

2.4.2. Application à la modélisation des écoulements multiphasiques

Dans ce paragraphe, on présente un travail effectué au cours de cette thèse, qui
est une application du principe de Hamilton à la modélisation des écoulements
multiphasiques. Les écoulements multiphasiques jouent en effet un rôle important
dans la modélisation des écoulements géophysiques (DREW et al. 2006). Dans le
cas des avalanches de neige sèche, on utilise le concept d’écoulement granulaire i.e.
le mouvement d’une phase solide composée d’un grand nombre de particules (la
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neige) dans une phase gazeuse (l’air). Même si le rôle de l’air est souvent négligé
pour modéliser la partie la plus dense de l’avalanche qui se trouve près du sol, il peut
néanmoins être important pour la description de la couche de neige diluée qui se
forme parfois dans la partie supérieure des avalanches de neige poudreuse (ANCEY

2001 ; ISSLER 2003, voir aussi KÖHLER et al. 2018 ; FAUG, TURNBULL et al. 2018 pour
une classification plus complète des différents régimes d’avalanche).

On distingue deux grandes familles de modèles continus d’écoulements multipha-
siques (DREW et al. 2006, voir aussi DRUI et al. 2019). Lorsque il est possible d’identifier
des régions distinctes composées d’une seule phase interagissant les unes avec les
autres, un modèle de phases séparées avec interfaces peut être utilisé. Lorsque la taille
typique de ces régions "pures" est très petite devant la taille typique de l’écoulement,
ou lorsque les phases sont très dispersées, il est plus adéquat d’utiliser une description
moyennée. Dans ce dernier cas, on suppose que toutes les phases sont présentes en
chaque point de l’espace, dans des proportions appelées fractions volumiques. C’est
cette approche qui est utilisée ici.

On considère donc un mélange constitué de deux phases, notées phase 1 et phase
2, occupant un domaine Ω⊂Rd . Pour i = 1,2, t ≥ 0 et ω⊂Ω, on introduit Vi (t ,ω) le
volume occupé par la phase i dans l’ensemble ω. Il s’ensuit que Vi (t , ·) est une mesure
positive et absolument continue (i.e. Vi (t ,ω) = 0 si |ω| = 0). Par conséquent, il existe
une densité αi appelée fraction de volume telle que, pour ω⊂Ω,

Vi (t ,ω) =
∫
ω
αi (t , x)dx. (0.164)

On suppose de plus que les deux phases occupent tout l’espace disponible (i.e.
V1(t ,ω)+V2(t ,ω) = |ω|) et que chacune des deux phases est présente en tout point de
l’espace. En terme de fractions volumiques, cela s’écrit

α1 +α2 = 1, et 0 <αi < 1. (0.165)

On voudrait obtenir des équations d’évolution pour les densités ρi et les vitesses vi

de chaque espèce, qui généraliseraient les équations d’Euler dans le cas d’un mélange
biphasique. Pour cela, on va utiliser le principe variationnel décrit dans le paragraphe
précédent. Un choix simple serait de considérer la densité lagrangienne suivante :

L =α1L1 +α2L2 = 1

2
ρ1|v1|2 −ρ1e1

(
ρ1

α1

)
+ 1

2
ρ2|v2|2 −ρ2e2

(
ρ2

α2

)
, (0.166)

avec ei l’énergie interne de la phase i . Notons l’apparition du rapport ρi ,0 := ρi /αi ,
qui correspond à la densité de chaque espèce prise séparément.

Remarque 22. Dans le cas où une des deux phases, par exemple la phase 1, est constituée
de particules solides, la densité matérielle correspondante ρ1,0 doit être prise constante,
et l’énergie interne e1 égale à 0. Cela ne change pas la structure des équations.

En effet, l’expression (0.166) paraît justifiée par le fait que l’énergie est une quantité
extensive. L’énergie cinétique du mélange est donc donnée par la somme des énergies
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cinétiques de chaque phase, tout comme l’énergie potentielle généralisée. Cependant,
le système obtenu en appliquant le principe variationnel à la densité lagrangienne
(0.166) n’est pas toujours hyperbolique. Plus précisément, on peut montrer que pour
tous v1, v2 avec v1 ̸= v2 et

|v2 − v1|2 < (ρ1 +ρ2)c2
w

[(
α1

ρ1

)1/3

+
(
α2

ρ2

)1/3
]3

(0.167)

avec cw la vitesse du son dans le mélange, le symbole associé au système d’équations
obtenu admet des valeurs propres de partie imaginaire non nulle (voir GAVRILYUK

2011). Par conséquent, la pertinence de ce modèle paraît questionnable.
Pour pallier à ce problème d’hyperbolicité, on considère dans cette thèse une densité

lagrangienne plus complexe, donnée par

L = 1

2
ρ1|v1|2 −ρ1e1

(
ρ1

α1

)
+ 1

2
ρ2|v2|2 −ρ2e2

(
ρ2

α2

)
− 1

2
Tr(r P ), (0.168)

où P est un tenseur de Reynolds, dont l’évolution est prescrite par la contrainte

∂t P + (u ·∇)P + ∂u

∂x
P +P

(
∂u

∂x

)T

= 0, (0.169)

et où r représente une densité, et u une vitesse. Comme on considère un mélange,
plusieurs choix sont possibles pour la densité r et la vitesse u associées à P . En effet,
on peut prendre r = ρ1, r = ρ2 ou même r = ρ, avec ρ la densité du mélange définie
par

ρ = ρ1 +ρ2. (0.170)

De même, on peut choisir u = v1, u = v2 ou u = v , avec v la vitesse moyenne associée
à la conservation de ρ :

ρv := ρ1v1 +ρ2v2, de sorte que ∂tρ+div(ρv) = 0. (0.171)

Un premier résultat obtenu pendant cette thèse concernant la densité lagrangienne
(0.168) est un critère simple permettant de choisir le couple (r,u) :

RÉSULTAT 2 (DELEAGE 2025)

Considérons le système d’équations obtenu par principe variationnel appliqué
à la densité lagrangienne (0.168), sous les contraintes de conservation des
densitésρ1,ρ2 et d’évolution de P (0.169). En dimension d = 1, toutes les valeurs
propres du symbole associé sont réelles lorsque les vitesses v1 et v2 sont proches
si, et seulement si, la densité r et la vitesse u sont "compatibles", i.e. liées par la
relation

∂t r +div(r u) = 0. (0.172)

Cette proposition est complétée par un second résultat, énoncé ici de manière
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informelle :

RÉSULTAT 3 (DELEAGE 2025)

Considérons de nouveau le système (0.168)-(0.169), complété par la conserva-
tion des densités ρ1,ρ2 et la condition de compatibilité

∂t r +div(r u) = 0. (0.173)

Alors
— En dimension d = 1, le système associé est hyperbolique lorsque les vi-

tesses v1 et v2 sont proches ;
— En dimension d = 2,3, on peut garantir l’hyperbolicité lorsque v1 et v2

sont proches en imposant des conditions supplémentaires dites de non ré-
sonance. Si ces conditions ne sont pas garanties, le système est faiblement
hyperbolique.

En particulier, la densité lagrangienne avec tenseur de Reynolds permet d’obtenir
un système avec un bon comportement lorsque les deux vitesses sont proches, ce qui
n’est pas le cas pour le système associé à la densité lagrangienne plus simple (0.166).
On renvoie au chapitre 2 pour plus de contexte et de références, des énoncés plus
précis et les preuves de chaque résultat. En particulier, on traite également dans cette
section le cas supplémentaire d’une densité lagrangienne avec tenseur de Reynolds
sur chacune des phases :

L = 1

2
ρ1|v1|2 −ρ1e1

(
ρ1

α1

)
+ 1

2
ρ2|v2|2 −ρ2e2

(
ρ2

α2

)
− 1

2
Tr(ρ1P1)− 1

2
Tr(ρ2P2). (0.174)

Remarque 23. On a vu dans la section précédente que la même structure des équations
moyennées de Reynolds apparaît dans deux contextes différents, tous deux liés à un
opérateur de moyennisation. Le tenseur de Reynolds est alors défini par les corrélations
d’ordre 2 des fluctuations de vitesses. En effet, c’est le cas dans le contexte des écoulements
en couche mince, pour lesquels l’opérateur est donné par la moyennisation sur la
profondeur, et dans le cas des écoulements turbulents, pour lesquels l’opérateur est
la moyenne de Reynolds. Dans le contexte des écoulements multiphasiques, on peut
également trouver des opérateurs de moyennisation. En effet, une autre manière de
dériver un modèle de mélange à phases dispersées avec des fractions volumiques est
de partir d’un modèle à phases séparées et d’appliquer un procédé de moyennisation
spécifique (par exemple une moyenne d’ensemble, voir le livre de DREW et al. 2006). Il
serait alors intéressant de savoir s’il est possible de dériver dans ce contexte une équation
d’évolution pour les secondes corrélations de la vitesse microscopique, définies à partir
de l’opérateur de moyennisation spécifique, qui serait analogue à l’équation d’évolution
du tenseur de Reynolds présentée ici.

Dans la section suivante, on quitte le domaine des fluides parfaits afin de pouvoir
modéliser les effets de friction qui sont prédominants dans la partie dense des ava-
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lanches granulaires. Dans ce régime, le rôle joué par l’air environnant peut souvent
être négligé, car la densité de l’air est très inférieure à celle des particules solides.
Considérer un modèle monophasé est alors une bonne approximation qui permet de
simplifier drastiquement les équations (ISSLER 2003). Pour dériver les équations, on
n’utilisera pas le principe variationnel, mais on se basera sur des lois empiriques obte-
nues expérimentalement. En effet, une des limites du principe de Hamilton est qu’il
procure des modèles pour lesquels l’énergie est forcément conservée, grâce au théo-
rème de Noether. Or les phénomènes de friction, étant opposés au mouvement, sont
généralement associés à des dissipations d’énergie, et doivent donc être modélisés
autrement.

3. Rhéologies granulaires
Cette section a pour but de présenter quelques propriétés des écoulements granu-

laires denses ainsi que certaines équations utilisées pour les modéliser. Une attention
particulière est portée aux écoulements gravitaires sur plan incliné, puisqu’on s’in-
téresse in fine aux phénomènes d’avalanches. Dans ce contexte, le comportement
du milieu peut être décrit par une loi de friction. On commence donc par introduire
les lois de frictions dans le paragraphe 3.1, d’abord à l’échelle macroscopique, puis
à des échelles de plus en plus réduites, jusqu’à la description d’une rhéologie locale
(rhéologie µ(I ) incompressible) au paragraphe 3.2. Cela permet alors de présenter
un résultat de la thèse, qui est la dérivation et l’analyse d’un modèle moyenné sur la
profondeur consistant avec la rhéologie µ(I ). On donne ensuite en 3.3 un aperçu des
différents modèles présentés dans la littérature pour généraliser cette rhéologie aux
écoulements compressibles. On en profite pour énoncer un résultat supplémentaire
de cette thèse, qui est la dérivation d’un modèle moyenné sur la profondeur consistant
avec une extension compressible de la rhéologie µ(I ). La fin de la section (paragraphe
3.4) est une introduction au cas des suspensions (phase granulaire immergée dans
un liquide). On présente dans ce contexte un autre résultat de la thèse : la stabilité
asymptotique d’une onde progressive pour un modèle jouet de suspension.

3.1. Lois de friction
Les lois de friction permettent de décrire le comportement des forces d’interaction

entre deux solides en contact. Un coefficient de friction est utilisé afin de relier les
forces normale et tangentielle. On commence par présenter la loi de friction la plus
simple (loi de Coulomb), puis on introduit une loi plus complexe obtenue expéri-
mentalement par POULIQUEN 1999b dans le cas d’un écoulement granulaire sur fond
rugueux.

3.1.1. Loi de Coulomb

La loi de Coulomb peut s’énoncer facilement à l’échelle macroscopique. Considé-
rons en effet un objet de masse m en contact avec un second objet. Les forces de
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contact peuvent alors se décomposer en une résistance normale RN , i.e. une compo-
sante perpendiculaire à la surface de contact, et une résistance tangentielle RT (voir
Figure 5). La loi de Coulomb peut alors être énoncée ainsi :

— Il existe un coefficient µs (coefficient de friction statique) tel que, en cas de non
glissement, |RT | ≤µs |RN |, et

— Il existe un coefficient µd (coefficient de friction dynamique) tel que, en cas de
glissement, RT est opposé à la vitesse de glissement, avec |RT | =µd |RN |.

FIGURE 5. – Schéma de solide sur plan incliné

Le cas qui nous intéresse ici est celui d’une masse soumise à la gravité sur un plan
incliné faisant un angle θ avec l’horizontale (Figure 5). Dans ce cas, la condition
de contact permet de déterminer |RN | = mg cosθ. Le principe fondamental de la
dynamique projeté sur l’axe horizontal s’écrit alors

mẍ = mg sinθ+RT . (0.175)

On en déduit le comportement suivant :
— Si l’objet est à l’arrêt, alors RT =−mg sinθ, et donc tanθ ≤µs . Le coefficient de

frottement statique peut donc s’interpréter comme la pente à partir de laquelle
une masse initialement immobile commence à glisser.

— Si l’objet est en mouvement (dans le sens de la descente), on a RT =−µd mg cosθ.
L’accélération s’écrit donc ẍ = g cosθ(tanθ−µd ). Trois comportement sont pos-
sibles :

1. Si tanθ <µd , l’objet ralentit jusqu’à s’arrêter. On retrouve alors le cas précé-
dent, et donc tanθ ≤µs . Par conséquent, on en déduit la relation µd ≤µs .

2. Si tanθ =µd , l’objet descend à vitesse constante.

3. Si tanθ >µd , la descente est uniformément accélérée.

Par conséquent, on voit que le coefficient dynamique peut s’interpréter comme
la pente d’équilibre à laquelle un mouvement stationnaire est possible.
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La loi de Coulomb a été utilisée à l’échelle des écoulements moyennés sur la profon-
deur par Savage et Hutter (SAVAGE et al. 1989). Rappelons que les équations exactes
sont données par (0.79) :

∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 +

∫ h

0
(u −U )2dz

)
= g h sinθ+ 1

ρ

[
∂x

(∫ h

0
σxxdz

)
−σxz(0)

]
.

(0.176)
Pour obtenir un système d’équations fermé, Savage et Hutter font les hypothèses
suivantes :

— L’intégrale de u2 est approchée par

hU 2 +
∫ h

0
(u −U )2dz =αhU 2, (0.177)

où α≥ 1 est un paramètre appelé facteur de forme.

Remarque 24. Si α= 1, on retrouve l’hypothèse utilisée pour dériver le modèle de Saint
Venant (0.96) consistant à négliger les fluctuations de vitesses. Si α > 1, ces fluctua-
tions sont prises en compte. Notons que dans le cas α> 1, l’invariance galiléenne des
équations et l’équation de l’énergie totale ne sont plus vérifiées, comme montré par
RICHARD et GAVRILYUK 2012. De plus, aucune raison ne justifie a priori le fait que
α soit constant dans tout l’écoulement. En ce sens, le modèle augmenté avec tenseur
de Reynolds présenté dans le paragraphe 2.3 permet de résoudre ces contradictions,
puisqu’il revient à considérer un coefficient α variable qui possède sa propre équation
d’évolution, compatible avec un bilan d’énergie.

— Le terme de frottement au fond −σxz(0), qui correspond à la résistance tangen-
tielle du support, est exprimé par la loi de Coulomb : |σxz(0)| = µ|σzz(0)|. Le
coefficient σzz(0) (la résistance normale) est donné en faisant l’approximation
hydrostatiqueσzz = ρg (z−h)cosθ, qui est vraie en négligeant les termes d’ordre
ε dans les variables adimensionnées (voir équation (0.70)). On en déduit que
σxz(0) =µsgn(U )ρg h cosθ.

— L’intégrale de σxx est calculée en faisant l’hypothèse que σxx = Kσzz . K est un
facteur de proportionnalité qui est donné explicitement par Savage et Hutter
grâce à un critère de Mohr-Coulomb, inspiré de la mécanique des sols mais
appliqué ici à un milieu granulaire qui s’écoule. Si K = 1, les contraintes normales
sont isotropes et peuvent être interprétées comme une pression, qui est ici
hydrostatique (σxx =σzz =−pH ). Si K ̸= 1, on dit que les contraintes normales
sont anisotropes.

Finalement, le modèle de Savage et Hutter peut s’écrire ainsi :
∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
αhU 2 + K g h2 cosθ

2

)
= g h cosθ

[
tanθ−µsgn(U )

]
.

(0.178)
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Notons que, comme pour le cas macroscopique, l’équilibre stationnaire uniforme
n’est possible que pour tanθ =µ. Pour α= 1, on retrouve la structure des équations
de Saint Venant avec un terme source.

3.1.2. Loi de friction de Pouliquen

À partir du modèle pionnier de Savage et Hutter, d’autres modèles ont été dérivés
afin de prendre en compte des effets supplémentaires. Concernant la loi de friction,
un développement important a été effectué par POULIQUEN 1999b. Le dispositif expé-
rimental considéré est constitué d’un plan inclinable sur lequel une couche de grains
a été collée afin d’obtenir un fond rugueux et de forcer au mieux la condition de non
glissement. En amont du plan incliné, un réservoir avec une porte de hauteur réglable
permet d’obtenir des écoulements granulaires dont l’épaisseur est contrôlée. Les
particules utilisées pour l’expérience sont des billes de verre (particules sphériques).
Grâce à ce dispositif, des écoulements stationnaires et uniformes sont obtenus. La
mesure des paramètres de ces écoulements permet alors d’établir une nouvelle loi
de friction plus précise, donnant de bonnes prédictions théoriques dans plusieurs
configurations différentes (voir la fin de ce paragraphe). On résume ci-dessous des
résultats importants de l’article de Pouliquen dans l’établissement de cette loi de
friction, qui sont illustrés par la Figure 6.

— Des écoulements stationnaires et uniformes sont obtenus pour le même maté-
riau avec des pentes différentes. En particulier, ces écoulements ne peuvent pas
être décrits par le modèle de Savage et Hutter (0.178).

— À chaque inclinaison θ correspond une hauteur minimale en-dessous de la-
quelle aucun écoulement stationnaire uniforme n’est possible, et les particules
s’arrêtent. Cette hauteur minimale est notée hstop (θ). Une expression analy-
tique pour hstop (θ) correspondant aux mesures expérimentales est donnée par
Pouliquen :

tanθ =µ1 + (µ2 −µ1)exp

(
−hstop

L

)
. (0.179)

Le paramètre µ1 correspond à la pente en-dessous de laquelle tous les écoule-
ments s’arrêtent (hstop (θ) →∞ lorsque tanθ→µ1). Le paramètre µ2 est la pente
à partir de laquelle hstop = 0, i.e. aucun grain ne peut s’arrêter. Le paramètre
L est une longueur typique. D’autres formules pour hstop ont été proposées,
notamment (voir POULIQUEN et FORTERRE 2002)

tanθ =µ1 + µ2 −µ1

1+hstop /L
. (0.180)

— La vitesse U de l’écoulement, sa hauteur h et l’angle θ vérifient à l’équilibre la
relation

F =β h

hstop (θ)
, avec F = |U |√

g h
(0.181)

le nombre de Froude (voir (0.68)) et β > 0 un paramètre indépendant de l’in-
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clinaison, de la taille des grains et de la rugosité. Notons que cette relation est
parfois écrite en remplaçant F par F := F /

p
cosθ, ce qui permet de prendre en

compte la pente dans la définition du nombre de Froude.

FIGURE 6. – Résultats expérimentaux de POULIQUEN 1999b. À gauche, mesures et
expressions analytique de hstop (θ) pour les différents systèmes de grains
étudiés. À droite, corrélation entre le nombre de Froude et le rapport
h/hstop .

À partir de ces considérations, il est possible de déduire une loi de friction pour les
écoulements granulaires. En effet, on a vu précédemment que l’équilibre est atteint
lorsque le frottement est égal à la pente : µ= tanθ. Pour avoir des écoulements sta-
tionnaires et uniformes à des pentes différentes, il faut donc considérer un coefficient
de frottement µ variable. À l’équilibre, on peut exprimer µ= tanθ en fonction de hstop

par la relation (0.179) (ou (0.180)). De même, on peut exprimer hstop en fonction de h
et U via la relation (0.181). En combinant ces équations, on obtient une expression de
µ en fonction de h et de U qui est valable à l’équilibre. L’hypothèse de Pouliquen est
que la relation µ=µ(h,U ) reste vraie même pour des écoulements hors équilibre. La
loi de friction proposée s’écrit

µ=µ(h,U ) = tanθstop

(
βh

√
g h

|U |

)
, (0.182)

où θstop (h) est la fonction réciproque de hstop (θ). Le système d’équations moyennées
sur la profondeur correspondant est donc

∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
αhU 2 + K g h2 cosθ

2

)
= g h cosθ

[
tanθ−µ(h,U )sgn(U )

]
.

(0.183)

Remarque 25. Rien ne garantit a priori que la relation µ = µ(h,U ), obtenue pour
des écoulements stationnaires et uniformes, reste valide pour des écoulements non-
stationnaires et/ou non-uniformes. Les travaux cités ci-dessous montrent cependant que
cette hypothèse permet d’obtenir des résultats satisfaisants dans plusieurs configurations
hors équilibre. Une contribution de cette thèse, présentée au paragraphe 3.2.3, est une
estimation théorique de l’écart entre la loi de friction (0.182) et la friction au sein d’un
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écoulement non stationnaire uniforme, ainsi que la prise en compte de cet écart dans
un modèle moyenné sur la profondeur (voir résultats 4 et 5).

Le modèle (0.183) a été utilisé dans de nombreuses situations. Citons ici trois
exemples d’applications (en plus de la possibilité de prédire des écoulements sta-
tionnaires uniformes sur des pentes de valeurs différentes).

— Ce système a été utilisé pour prédire le profil d’un front granulaire sec (POULIQUEN

1999a, voir Figure 7).
— Le modèle a également été utilisé pour prédire l’apparition d’ondes de surfaces

(FORTERRE et POULIQUEN 2003). Les ondes de surface peuvent être observées
lorsque les effets de la gravité ne sont pas suffisants pour compenser l’instabilité
causée par les termes inertiels. Mathématiquement, cela peut se caractériser
par l’existence d’un nombre de Froude critique Fc . L’instabilité a lieu si et seule-
ment si F >Fc . Le modèle (0.183) prédit, lorsque K = 1 et α= 1, un nombre de
Froude critique Fc = 2/3. Ce résultat est proche de la valeur mesurée expérimen-
talement par FORTERRE et POULIQUEN 2003 (entre 0.53 et 0.63 selon la pente).
Le modèle ne permet cependant pas de prédire le taux de croissance de cette
instabilité lorsque la fréquence de la perturbation augmente. En effet, Forterre
et Pouliquen observent expérimentalement une fréquence de coupure, au-delà
de laquelle le taux de croissance devient négatif et l’instabilité disparaît, alors
que le modèle prédit un taux de croissance positif quelle que soit la fréquence.

— Une version bidimensionnelle a été utilisée par POULIQUEN et FORTERRE 2002
pour prédire l’étalement d’une masse de grains. Pour prendre en compte l’arrêt,
la loi de friction µ = µ(h,U ), qui peut s’interpréter comme un coefficient de
friction dynamique variable, est complémentée grâce à un coefficient de friction
statique µs =µs(h), également déterminé expérimentalement. La loi de friction
utilisée est alors une interpolation entre les coefficients dynamique et statique.
La transition du régime dynamique vers le régime statique se fait lorsque le
nombre de Froude F devient inférieur àβ. Par la relation (0.181), cela correspond
à l’équilibre à h < hstop . Lorsque h devient inférieur à hstop , l’augmentation de
la friction permet d’arrêter l’écoulement, ce qui est conforme aux observations
de POULIQUEN 1999b. Le choix du critère de transition F <β au lieu de h < hstop

permet d’avoir une loi de friction bien définie pour n’importe quelle pente, alors
que la fonction hstop (θ) n’est définie que pourµ1 < tanθ <µ2. Des lois de friction
similaires avec d’autres critères de transition entre le régime statique et le régime
dynamique ont été proposés par EDWARDS, VIROULET et al. 2017 et EDWARDS,
RUSSELL et al. 2019.
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FIGURE 7. – Profils de fronts granulaires secs. En trait plein, prédiction du mo-
dèle (0.183). Les points sont les mesures expérimentales effectuées par
POULIQUEN 1999a.

3.2. Rhéologie frictionnelle
Dans ce paragraphe, on montre comment les lois de frictions décrites précédem-

ment peuvent être utilisées pour obtenir des rhéologies frictionnelles locales. Plus
précisément, on se concentrera sur la rhéologie µ(I ). Après avoir décrit les caracté-
ristiques principales de cette rhéologie, on montre comment elle peut être utilisée
pour affiner les modèles moyennés sur la profondeur. En particulier, on présente un
modèle dérivé pendant cette thèse à partir de cette rhéologie.

3.2.1. Hypothèses effectuées dans l’écriture de la rhéologie

La rhéologie µ(I ), proposée par JOP et al. 2006, peut être énoncée comme une
transposition à l’échelle mésoscopique de la loi de friction µ= µ(h,U ) obtenue par
POULIQUEN 1999b et décrite dans le paragraphe précédent. Elle possède en effet les
deux caractéristiques suivantes :

— La contrainte normale et la contrainte tangentielle sont proportionnelles. Le
coefficient de proportionnalité ou coefficient de friction est noté µ.

— Le coefficient de friction µ peut prendre plusieurs valeurs en fonction des para-
mètres de l’écoulement.

Pour obtenir une rhéologie locale, Jop, Forterre et Pouliquen font plusieurs hypothèses
supplémentaires. La première hypothèse est que l’écoulement est incompressible,
avec une densité constante. Comme expliqué dans le paragraphe 1.3.2, à l’échelle
mésoscopique, les contraintes internes sont décrites par le tenseur des contraintes σ.
La distinction entre les contraintes normales et tangentielles peut alors être effectuée
en décomposant le tenseur des contraintes σ en deux tenseurs orthogonaux :

σ=−pId+τ. (0.184)

La pression p est le multiplicateur de Lagrange associé à la contrainte d’incompressi-
bilité. Comme expliqué dans le paragraphe 2.1, la matrice −pId décrit une contrainte
normale isotrope. On suppose que les matrices −pId et τ sont orthogonales, ce qui
s’écrit simplement Tr(τ) = 0. τ est appelé le déviateur et sert à modéliser les contraintes
tangentielles. En particulier, la contrainte totale |σ| s’exprime grâce aux contraintes
normales et tangentielles : |σ|2 = p2n/2+ |τ|2 (avec n la dimension d’espace). La
proportionnalité entre les contraintes normales et tangentielles s’écrit simplement
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|τ| =µp. Il faut ensuite spécifier la direction du tenseur τ. Pour cela, Jop, Forterre et
Pouliquen font l’hypothèse que τ est aligné avec le tenseur des taux de déformation γ̇,
défini par

γ̇=∇v + (∇v)T = 2D(v). (0.185)

Notons que γ̇ est un tenseur symétrique, de trace nulle puisque l’écoulement est
supposé incompressible. Lorsque γ̇= 0, il n’y a pas de déformation (voir le lemme 1).
À l’échelle macroscopique, la friction est opposée à la vitesse de glissement, i.e. à la
différence de vitesse entre les deux objets en contact. À l’échelle locale, l’alignement
de τ avec γ̇ signifie que la friction est opposée à la déformation.

Remarque 26. L’alignement du déviateur τ avec le tenseur des déformations γ̇ peut
également s’interpréter en terme de dissipation d’énergie. À l’échelle macroscopique, la
dissipation d’énergie cinétique par unité de temps causée par le frottement est donnée
par la puissance P de cette force, i.e. par le produit scalaire entre cette force et la vitesse
de l’objet. Lorsqu’il y a contact, la vitesse est uniquement tangentielle, et donc le travail
de la résistance normale est nul. De plus, le fait que la résistance tangentielle soit
opposée à la vitesse de glissement v permet d’écrire la puissance comme

P =−|RT ||v |. (0.186)

L’alignement de la résistance tangentielle et de la vitesse de glissement peut donc s’inter-
préter ainsi : la direction de la résistance tangentielle maximise la dissipation d’énergie
liée au frottement. À l’échelle mésoscopique, la puissance des frottements internes s’écrit
(voir section 1.4) :

P =−
∫
σ : D(v) =−

∫
τ : D(v) =−

∫
µ(I )p

τ

|τ| : D(v), (0.187)

en utilisant la contrainte d’incompressibilité et la relation |τ| =µ(I )p. Par conséquent,
lorsque la norme de τ est fixée, la dissipation d’énergie est maximisée si τ et γ̇= 2D(v)
sont alignés, i.e. si τ/|τ| = γ̇/|γ̇|.

À l’échelle macroscopique, la loi de Coulomb énonce que la contrainte |RT | =
µd |RN | doit être remplacée par une inégalité en cas de non glissement (|RT | ≤µs |RN |).
À l’échelle mésoscopique, lorsqu’il n’y a pas de déformation (γ̇ = 0), la contrainte
|τ| =µp est relaxée en une inégalité : |τ| ≤µp. Cette caractérisation de la plasticité est
classique en mécanique des sols et est nommée critère de Drucker-Prager (DRUCKER

et al. 1952).
Il reste alors à déterminer la dépendance du coefficient de friction µ à partir des

paramètres de l’écoulement. Pour la loi de friction de Pouliquen, le coefficient µ(h,U )
dépend d’un nombre sans dimension Ig qui peut s’écrire comme le rapport suivant

Ig = L|U |
h
√

g h
, (0.188)

avec L une longueur typique, h la hauteur de l’écoulement et U la vitesse moyenne.
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Ces paramètres ne peuvent pas être utilisés ici, car ils sont définis à l’échelle de
l’écoulement moyenné sur la profondeur. Or on se place ici à l’échelle mésoscopique,
à laquelle les grandeurs précédentes sont des quantités non locales. L’idée est alors
de remplacer ces paramètres par une version locale, en utilisant les correspondances
suivantes :

— La quantité
√

g h est la racine carrée de la pression hydrostatique exercée sur le
plan incliné, divisée par la densité de l’écoulement. Une version locale est donc√

p/ρp , avec p la pression et ρp la densité des grains.
— Une version locale du rapport U /h, qui peut être vu comme un taux d’accrois-

sement de la vitesse, est le taux de cisaillement ∂u/∂z. Pour un écoulement
multidimensionnel, le taux de cisaillement est décrit par le tenseur γ̇. La quan-
tité |U |/h peut donc être remplacée par |γ̇|.

— À l’échelle locale, une longueur typique est le diamètre des particules d , qui peut
donc être utilisé pour remplacer le paramètre L.

Par conséquent, le coefficient de friction local µ est une fonction du nombre sans
dimension I défini par

I = |γ̇|d√
p/ρp

. (0.189)

I est appelé nombre inertiel et permet de caractériser l’écoulement (voir le livre
d’ANDREOTTI et al. 2013). Lorsque I → 0, l’écoulement est dit quasi-statique. Lorsque
I ≥ 1, l’écoulement est rapide et dilué, et dominé par des collisions. Entre ces deux
régimes, le milieu est dense et s’écoule de manière analogue à un fluide. Le nombre
sans dimension I peut être interprété comme le rapport entre une échelle de temps
microscopique liée au réarrangement entre les grains, et une échelle de temps macro-
scopique liée au cisaillement (GdR MIDI 2004).

3.2.2. La rhéologie µ(I )

Les équations constitutives de la rhéologie µ(I ) sont donc

ρ = cst , div(v) = 0,

∂t (ρv)+div(ρv ⊗ v +pId)T = div(τ)T +ρg,

τ=µ(I )p
γ̇

|γ̇| si γ̇ ̸= 0,

|τ| ≤µ(I )p si γ̇= 0,

I = d |γ̇|√
p/ρp

.

(0.190)

Pour fermer les équations, il reste à déterminer comment le coefficient de friction
µ dépend du nombre inertiel I . Pour cela, on peut mesurer expérimentalement µ
et I , et interpoler les données obtenues. Une autre méthode consiste à étudier les
solutions stationnaires uniformes de la rhéologie µ(I ), et à prescrire une loi µ(I )
permettant de retrouver les comportements observés à l’échelle des écoulements
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moyennés sur la profondeur. Considérons donc une solution stationnaire et uniforme
des équations constitutives (0.190), dans le cadre d’un écoulement bidimensionnel
sur plan incliné. On reprend les notations de la section 1.5, et on cherche donc une
solution qui peut dépendre de la variable z, mais pas des variables t (stationnaire) et x
(uniforme). La contrainte div(v) = 0 donne alors ∂z w = 0, ce qui couplé à la condition
de non pénétration w(0) = 0 impose w = 0. Le champ de vitesses est donc de la forme
v = (u(z),0)T . On en déduit que

γ̇=
(

0 ∂zu
∂zu 0

)
, et |γ̇| = |∂zu|. (0.191)

De plus, les termes d’accélération sont nuls et l’équation de la quantité de mouve-
ment est réduite à div(pI d −τ)T = ρg. En supposant que la vitesse est non nulle et
puisque u(0) = 0 (condition de non glissement (0.65)), on obtient |γ̇| = |∂zu| ̸= 0. Les
contraintes tangentielle et normale sont donc données par

τxz = ρg (h − z)sinθ et p = ρg (h − z)cosθ, (0.192)

cette dernière correspondant à la pression hydrostatique. Par conséquent, µ(I ) =
|τ|/p = tanθ. On retrouve donc la condition d’équilibre µ= tanθ dérivée précédem-
ment. Avec la rhéologie µ(I ), cette condition est vérifiée en tout point de l’écoulement.
On en déduit que I est constant et donné par Iθ =µ−1(tanθ). En utilisant la définition
de I et la condition u(0) = 0, on obtient le profil de vitesse donné par

u(z) = 2Iθ
√
φg cosθ

3d

(
h3/2 − (h − z)3/2) (0.193)

(profil de Bagnold), avecφ= ρ/ρp la fraction volumique solide. Notons que le profil de
Bagnold correspond bien aux profils observés expérimentalement ou numériquement
(voir par exemple GdR MIDI 2004), ce qui est une validation de la rhéologie dans cette
configuration. La vitesse moyenne est alors donnée par

U = 1

h

∫ h

0
u(z)dz = 2Iθ

√
φg cosθ

5d
h3/2. (0.194)

Cela confirme la relation (0.181) entre le nombre de Froude et la hauteur obtenue par
POULIQUEN 1999b. On en déduit qu’à l’équilibre, le nombre inertiel est donné par

Iθ =
5dU

2h3/2
√
φg cosθ

. (0.195)

La fonction µ(I ) peut alors être déterminée en faisant coïncider µ(Iθ) avec la loi de
friction µ(h,U ) de POULIQUEN 1999b. En prenant par exemple l’expression (0.180) de
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hstop , on obtient la formule

µ(I ) =µ1 + µ2 −µ1

1+ Im
I

, avec Im = 5βd

2L
√
φ

, et donc Iθ = Im
tanθ−µ1

µ2 − tanθ
. (0.196)

La stabilité de cette solution pour les équations constitutives de la rhéologie µ(I )
(0.190) a été étudiée par FORTERRE 2006. La rhéologie µ(I ) linéarisée prédit en effet
que l’instabilité des ondes de surfaces a lieu lorsque le nombre de Froude F est
supérieur au nombre de Froude critique Fc donné par

Fc = 4

5

√
1− 3

2
tan2θ+ 3

4

(tanθ−µ1)(µ2 − tanθ)

µ2 −µ1
, (0.197)

ce qui est en accord avec les données expérimentales de FORTERRE et POULIQUEN

2003. La rhéologie linéarisée prédit également avec une bonne précision le taux
de croissance et la vitesse de phase de la perturbation. En particulier, on obtient
théoriquement la fréquence de coupure observée expérimentalement, ce qui n’est
pas le cas avec le modèle (0.183) de type Saint Venant avec loi de friction présenté
précédemment.

3.2.3. Conséquence pour les modèles moyennés

On voit avec le paragraphe précédent que, dans la configuration du plan incliné, la
rhéologie µ(I ) fait de meilleures prédictions que l’approche moyennée sur la profon-
deur. En effet, en plus de décrire l’état du milieu à l’intérieur de l’écoulement (profil
de vitesse, champs de pression et cisaillement), elle permet de prévoir avec préci-
sion la réponse linéaire à une perturbation (Froude critique, fréquence de coupure).
Cependant, comme expliqué en début d’introduction, la résolution numérique des
équations constitutives de la rhéologie µ(I ) est coûteuse en temps de calcul. Un autre
défaut de la rhéologie µ(I ) est son caractère mal posé. En effet, BARKER, SCHAEFFER,
BOHÓRQUEZ et al. 2015 montrent que la rhéologie µ(I ) admet l’instabilité de Hada-
mard : le taux de croissance linéaire des perturbations tend vers l’infini lorsque la
fréquence de la perturbation tend vers l’infini. Cette instabilité a par exemple été ob-
servée numériquement par N. MARTIN et al. 2017, qui montrent que des oscillations
du champ de vitesse et du cisaillement apparaissent lorsque la taille de maille utilisée
est réduite (voir Figure 8). Les auteurs précisent cependant que ces oscillations ont
lieu lorsque la taille d’une maille est de l’ordre de quelques diamètres de grains, et
qu’à cette échelle la description continue n’est pas la plus pertinente.
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FIGURE 8. – Instabilité d’Hadamard pour la rhéologie µ(I ) dans la simulation de l’ef-
fondrement d’une colonne de grains. h est ici la taille des mailles. Figure
tirée de N. MARTIN et al. 2017

Au contraire des équations de la rhéologie µ(I ), le modèle de type Saint Venant avec
friction (0.183) est bien posé (structure hyperbolique, voir théorème 1) et rapide à ré-
soudre, mais moins précis (pas de fréquence de coupure). Afin de combiner le meilleur
des deux approches, une solution est d’utiliser les prédictions de la rhéologie µ(I )
pour affiner les modèles de type Saint Venant. Citons deux exemples d’amélioration :

— Grâce à la rhéologie µ(I ), on connaît le profil de vitesse au sein d’un écoulement
stationnaire uniforme (profil de Bagnold, voir équation (0.193)). Pour un tel pro-
fil, le facteur de forme α peut être calculé et vaut 5/4. Dans l’article de SAINGIER

et al. 2016, cette valeur de α est utilisée afin de prédire la forme d’un front sec,
en bon accord avec des mesures expérimentales. La prédiction est meilleure
qu’avec α= 1, car utiliser α= 5/4 permet de prendre en compte l’aplatissement
du profil avec l’augmentation du nombre de Froude. Toutefois, le front sec n’est
bien défini que lorsqueα= 1. Pourα ̸= 1, les auteurs montrent que le modèle pré-
voit l’apparition d’un film précurseur de longueur infinie, qui ne correspond pas
aux observations expérimentales. À partir de simulations de fronts secs basées
sur une approximation des équations de la rhéologie µ(I ) (modèle granulaire
RNS/P), LAGRÉE, SAINGIER et al. 2017 montrent que le coefficientα vaut bien 5/4,
sauf près du front où il tend vers 1, et il n’y a alors aucun film précurseur. Notons
que dans le cadre des équations avec tenseur de Reynolds, α= 5/4 correspond à
P =U 2/4 et ψ=U 2/4h2 (et α= 1 correspond à ψ= 0).

— Afin de modéliser la fréquence de coupure, on peut ajouter au modèle de type
Saint Venant (0.183) un terme de diffusion horizontale permettant d’amortir les
hautes fréquences. Ce terme peut être calculé en faisant une approximation de
l’intégrale de τxx , qui est donné par la rhéologie. Cette approche a été utilisée
par FORTERRE 2006, qui a proposé un terme diffusif D donné par la formule

D = aρp d 2 tanθ

I 2
θ

∂x

(
U

h
∂x(hU )

)
, (0.198)
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où a est un paramètre sans dimension non spécifié. Le modèle correspondant
permet de retrouver la fréquence de coupure avec une bonne précision lorsque
a = 0.1. GRAY et EDWARDS 2014 proposent un terme diffusif donné par

D = ∂x

(
5d sinθ

9Iθ

√
g

φcosθ
h3/2∂xU

)
, (0.199)

qui est obtenu de manière consistante avec l’intégrale de τxx pour la rhéologie
µ(I ) et qui prédit bien la fréquence de coupure, sans paramètre d’ajustement.
Notons toutefois que, paradoxalement, les prédictions du nombre de Froude
critique et de la fréquence de coupure de ces modèles est beaucoup moins bonne
lorsqu’un facteur de forme α= 5/4 est utilisé (par exemple Fc = 2/

p
5 ≈ 0.89).

Les deux exemples précédents montrent que la prise en compte de la rhéologie
permet d’améliorer les modèles d’équations moyennées sur la profondeur, et que
l’utilisation d’un facteur de forme α= 5/4 n’est pas toujours pertinente. Un résultat de
cette thèse, présenté dans le chapitre 3, est la dérivation d’un modèle à trois équations
prenant en compte le profil de Bagnold via l’approche du tenseur de Reynolds présen-
tée dans la section 2.3. Le modèle est obtenu à partir d’un développement asympto-
tique des équations de la rhéologie µ(I ) en puissances du paramètre de couche mince
ε introduit dans le paragraphe 1.5. On a vu dans ce paragraphe que, dans les variables
adimensionnées, l’équation horizontale de la quantité de mouvement s’écrit (0.70)

εF 2 [
∂t̃ ũ +∂x̃(ũ2)+∂z̃(ũw̃)

]= sinθ+ε∂x̃σ̃xx +∂z̃σ̃xz , (0.200)

ce qui donne après intégration sur la profondeur (voir section 1.5)

εF 2 [
∂t̃ (h̃Ũ )+∂x̃

(
h̃Ũ 2 + h̃3ψ̃

)]= h̃ sinθ− σ̃xz(0)+ε∂x̃

(∫ h̃

0
σ̃xxdz̃

)
. (0.201)

Ainsi, on voit que si le terme h̃ sinθ− σ̃xz(0) (compétition entre le poids et la friction
au fond) n’est approché qu’à l’ordre 0 en ε, des termes d’erreurs d’ordre ε peuvent
apparaître. Pour obtenir un modèle avec une bonne précision, il paraît important
de ne pas négliger ces termes, qui sont du même ordre de grandeur que les termes
d’accélération horizontale. À partir du paramètre ε, on peut définir la consistance
d’un modèle moyenné comme suit :

Définition 7. On dit qu’un modèle d’équations moyennées sur la profondeur est consis-
tant avec la rhéologie µ(I ) jusqu’à l’ordre εn si toute solution des équations constitutives
de la rhéologie µ(I ) donne, après moyennisation, une solution approchée du modèle
moyenné, avec des termes d’erreur d’ordre au plus εn+1.

Une conséquence du développement asymptotique de la rhéologie, effectué dans
cette thèse jusqu’à l’ordre 1, est le résultat suivant :
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RÉSULTAT 4 (DELEAGE ET RICHARD 2025)

Dans l’asymptotique des écoulements en couche mince, l’approximation de
la friction au fond µ(I )|z=0 = µ(h,U ), avec µ(h,U ) la loi de friction (0.182), est
valide à l’ordre 0 en ε, mais pas à l’ordre 1 en ε. Par conséquent, le modèle
de Saint Venant avec loi de friction (0.183), et les versions avec un terme de
diffusion donné par (0.198) ou (0.199) ne sont pas consistants à l’ordre 1 avec la
rhéologie µ(I ).

L’intérêt d’écrire un modèle consistant à l’ordre 1 peut être justifié par le fait que les
termes inertiels sont d’ordre 1. Le second résultat obtenu dans ce cadre est le suivant :

RÉSULTAT 5 (DELÉAGE ET RICHARD, 2025 DELEAGE ET RICHARD 2025)

Il est possible d’écrire un modèle moyenné avec la structure hyperbolique des
équations de Reynolds (0.130), la loi de friction µ(h,U ) (0.182) et des termes de
correction garantissant la consistance à l’ordre 1 avec la rhéologie µ(I ). Pour ce
modèle, décrit dans la partie 2, le seuil d’instabilité des ondes de surface est le
même que pour la rhéologie µ(I ) (équation (0.197)).

Les détails de la dérivation et de l’analyse du modèle sont donnés dans le chapitre
3. En particulier, une version avec un terme de diffusion similaire à celui obtenu
par GRAY et EDWARDS 2014 et permettant de prédire la fréquence de coupure est
présentée.

Remarque 27. La prise en compte de diffusion dans les modèles de couche mince
est courante (voir par exemple BRESCH 2009). Un exemple simple est le modèle de
Saint-Venant visqueux, qui s’écrit en une dimension

∂t h +∂x(hU ) = 0,

∂t (hU )+∂x

(
hU 2 + g h2

2

)
= ν∂x (h∂xU ) ,

(0.202)

où ν> 0 désigne la viscosité, supposée ici constante. Le terme de diffusion permet d’in-
troduire la vitesse effective, définie ici comme U +ν∂x ln(h) et proposée par BRESCH et
DESJARDINS 2004. Cette vitesse effective satisfait une estimation d’énergie supplémen-
taire qui permet d’obtenir l’existence globale de solutions faibles pour le modèle (0.202)
(voir BRESCH et DESJARDINS 2003). La notion de vitesse effective sera reprise dans la
section 3.4 et au chapitre 6.

Le modèle présenté dans le résultat 5 est obtenu grâce à un développement asymp-
totique effectué au voisinage d’un écoulement stationnaire et uniforme. Pour des
configurations très éloignées des écoulements stationnaires et uniformes, certains
termes du modèles peuvent diverger et doivent donc être régularisés, afin de garantir
un comportement cohérent. Un troisième résultat obtenu dans ce contexte est le
suivant :
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RÉSULTAT 6

On peut écrire une version régularisée du modèle présenté dans le résultat
5. Cette version du modèle permet de prédire quantitativement les profils de
fronts secs, les arrêts d’avalanche et les écoulements accélérés, tout en restant
consistante à l’ordre 1 avec la rhéologie µ(I ).

FIGURE 9. – Comparaisons entre les prédictions du modèle régularisé (en traits pleins)
et des données expérimentales (points). À gauche, profils de front sec
(données de SAINGIER et al. 2016). À droite, arrêt d’avalanche (données
de FARIN et al. 2014).

Deux exemples de prédiction du modèle régularisé (profil de front sec et effondre-
ment de colonne) sont présentés dans la figure 9. Ces prédictions sont obtenues par
la résolution numérique du modèle. Ici, il est important d’utiliser un schéma numé-
rique pouvant capturer à la fois les fronts secs et l’arrêt de l’écoulement. L’écriture
du modèle régularisé, sa résolution numérique et les comparaisons avec les données
expérimentales sont présentées en détail au chapitre 4.

3.3. Généralisations compressibles de la rhéologie µ(I )

Dans ce paragraphe, on discute certaines limites de la rhéologie µ(I ) incompres-
sible qui suggèrent qu’utiliser une rhéologie compressible pourrait se révéler plus
avantageux dans certaines situations. On présente ensuite deux généralisations com-
pressibles de la rhéologie µ(I ).

3.3.1. Nécessité d’une rhéologie compressible

Si la rhéologie µ(I ) telle que présentée dans le paragraphe précédent permet une
description fine des écoulements granulaires dans de nombreux contextes, elle paraît
toutefois limitée par certains aspects. Tout d’abord, comme expliqué au paragraphe
3.2.3, cette rhéologie est mal posée au sens de Hadamard. Dans le cas d’un écoulement
sur un plan incliné, on a vu que ce problème peut être contourné en utilisant une
approximation bien posée de la rhéologie à l’échelle des écoulements moyennés sur
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la profondeur. Cependant, il paraît tout de même important de pouvoir écrire un
système d’équations constitutives qui soit bien posé dès le départ.

Une autre limite de la rhéologie telle que présentée dans le paragraphe précédent
est son caractère incompressible, restreint aux écoulements de densité constante. Si la
densité du matériau ρp est forcément constante pour des particules solides, la densité
de l’écoulement ρ = ρpφ peut en pratique varier. Ici, φ désigne la fraction volumique
solide, comme définie au paragraphe 2.4 avec la notation αi . Dans le contexte des
écoulements granulaires, c’est la notation φ qui est la plus courante, et c’est donc celle
qui est utilisée dans cette section.

Dans l’article DA CRUZ et al. 2005, da Cruz et al. montrent à partir de simulations
discrètes que, dans le cas d’un cisaillement plan, la fraction volumique solide est reliée
au nombre inertiel. Dans le régime étudié, cette relation peut être mise sous la forme
d’une fonction affine décroissante :

φ=φc − I∆φ, (0.203)

avec φc > 0 la fraction volumique maximale et ∆φ> 0 une constante. La décroissance
de φ avec I peut être interprétée physiquement comme un effet de dilatance : si
le cisaillement (et donc le nombre inertiel) augmente, la fraction de volume solide
diminue. L’expansion du milieu facilite alors le mouvement relatif des grains. DA CRUZ

et al. 2005 proposent donc une loi constitutive, appelée ici la rhéologie µ(I )−φ(I ) et
donnée par les relations

|τ| =µ(I )p et φ=φ(I ), avec I = d |γ̇|√
p/ρp

. (0.204)

Notons que cette loi constitutive concerne uniquement des quantités scalaires. Son
utilisation est donc limitée à la description d’écoulements unidimensionnels. Le
terme unidimensionnel est ici à prendre au sens large, et désigne un écoulement pour
lequel il existe un système de coordonnées telles que le vecteur vitesse ne possède
qu’une composante non nulle et ne dépend que d’une coordonnée spatiale. Ce type
de configuration est aussi appelée un cisaillement simple, parce que le tenseur des
taux de déformations γ̇ est réduit dans ce cas à un unique scalaire. C’est le cas par
exemple pour les configurations étudiées dans l’article du GdR MIDI 2004, qui en plus
de l’écoulement sur plan incliné comprennent le cisaillement plan, le cisaillement
annulaire, la chute verticale, l’écoulement sur une pile de grains et le tambour rotatif.

Dans le cas d’un écoulement sur plan incliné, la rhéologie µ(I )−φ(I ) prédit que
le nombre inertiel I = Iθ est constant, et tel que µ(Iθ) = tanθ. Par conséquent, c’est
également le cas de la fraction volumiqueφ=φ(Iθ). Cela donne donc une justification
de l’usage de la rhéologie incompressible dans ce contexte. Notons cependant que la
valeur de la fraction volumique φ(Iθ) dépend de la pente considérée. L’avantage de
l’approche incompressible est qu’elle permet de définir la pression sans ambiguïté
comme le multiplicateur de Lagrange associé à la contrainte div(v) = 0. (voir section
2).
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Dans le cas compressible, cette définition de la pression ne peut pas être utilisée, et
on doit préciser la relation entre la pression et les autres variables du système. Notons
que la pression joue un rôle crucial dans la rhéologie µ(I )−φ(I ) (0.204), puisqu’elle
est utilisée à la fois dans la définition du nombre inertiel I et dans la relation donnant
la norme de τ. Il est donc important de bien définir la pression. Expérimentalement,
la pression est obtenue en mesurant la contrainte normale. Cependant, dans le cas
d’un écoulement multi-dimensionnel, les contraintes normales ne sont pas forcément
isotropes (voir par exemple WEINHART et al. 2013), ce qui constitue une difficulté
dans l’écriture d’une généralisation tensorielle et compressible des lois constitutives
(0.204).

3.3.2. Deux exemples de rhéologie granulaire compressible

On présente ici deux généralisations compressibles de la rhéologie µ(I ). En plus de
prendre en compte des variations de fraction de volume (dilatance), on va voir que
ces rhéologies sont bien posées (au sens de Hadamard). Pour écrire une rhéologie
compressible multi-dimensionnelle de type µ(I ), la première étape est de séparer
les déformations isotropes, liées au changement de volume, et les déformations de
cisaillement pur (sans changement de volume). En effet, comme expliqué précédem-
ment, la rhéologie µ(I )−φ(I ) s’applique à des configurations de cisaillement simple,
pour lesquelles le volume est constant. On décompose donc

γ̇= 2div(v)

n
Id+S, i.e. S = γ̇− 2div(v)

n
Id. (0.205)

La lettre n désigne ici la dimension d’espace, puisque la notation d est utilisée dans
cette section pour le diamètre des particules solides. La relation d’orthogonalité
Tr(S) = 0 signifie ici que S décrit un cisaillement à volume constant. Dans le cas
compressible multi-dimensionnel, le nombre inertiel peut donc être défini par

I = d |S|√
p/ρp

. (0.206)

Cette définition de I dans le cas compressible a été confirmée par des simulations
discrètes (CORTET et al. 2009, LACAZE et al. 2009).

Une première approche, utilisée par NOTT 2009, TRULSSON et al. 2013, HEYMAN

et al. 2017, est alors d’utiliser la relation φ=φ(I ) couplée à la définition de I (0.206)
afin d’obtenir une définition de la pression à l’équilibre peq :

peq (φ, |S|) = ρp d 2|S|2
I (φ)2

, (0.207)

avec φ 7→ I (φ) la fonction réciproque de I 7→φ(I ). Le tenseur des contraintes est alors
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exprimé par la relation suivante :

σ

peq (φ, |S|) =−Id+µ(φ)
S

|S| +2µb(φ)
div(v)

|S| Id. (0.208)

On voit donc apparaître un coefficient de friction µ(φ) lié au cisaillement pur, et un co-
efficient de friction µb(φ) lié au changement de volume. Notons qu’ici la dépendance
en φ est équivalente à une dépendance en I via la relation φ=φ(I ). Comme pour le
cas incompressible, le déviateur τ est aligné avec le tenseur S. La pression vaut ici

p =− 1

n
Tr(σ) = peq (φ, |S|)

(
1−2µb(φ)

div(v)

|S|
)

. (0.209)

Lorsque div(v) ̸= 0, la pression p diffère donc de la pression d’équilibre peq (φ, |S|). En
particulier, pour µb(φ) ̸= 0, la relation (0.206) n’est pas vérifiée lorsque div(v) ̸= 0 (elle
est vérifiée en remplaçant p par peq ). La densité de dissipation d’énergie par unité de
temps liée au frottement peut se calculer et vaut ici (voir l’équation (0.45)) :

−σ : D(v) = peq (φ, |S|)
[

div(v)−µ(φ)|S|−2µb(φ)
[div(v)]2

|S|
]

(0.210)

Par conséquent, le système est toujours dissipatif (σ : D(v) > 0, quelles que soient les
valeurs de |S| et de div(v)) si et seulement si µ(φ)µb(φ) > 1/8, comme remarqué par
GODDARD et al. 2018. Le caractère bien posé pour ces équations constitutives (i.e. la
non divergence des taux de croissance linéaires dans la limite des ondes courtes) est
caractérisé par la proposition suivante (HEYMAN et al. 2017).

Proposition 8. Les équations constitutives données par les relations (0.207) et (0.208)
sont bien posées au sens de Hadamard si, et seulement si, on la la relation

µb(φ) > 1− 7

6
µ(φ). (0.211)

D’autres relations constitutives ont été proposées par BARKER, SCHAEFFER, SHEARER

et al. 2017 (voir aussi ANDRADE et al. 2012), sous le nom de compressible I -dependent
rheology (CIDR). Contrairement à la rhéologie étudiée par HEYMAN et al. 2017, l’idée
de BARKER, SCHAEFFER, SHEARER et al. 2017, inspirée de la mécanique des sols, est de
garder la relation (0.206) définissant I , et de s’autoriser à relaxer la relation φ=φ(I )
lorsque div(v) ̸= 0. Cette relation est donc remplacée par une équation qui donne une
définition implicite de la pression en fonction des variables |S|,φ et div(v) :

div(v) = |S| f (p,φ, I ), (0.212)

avec f une fonction à spécifier. Le tenseur des contraintes est alors donné par

σ=−pId+Y (p,φ, I )
S

|S| , (0.213)
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avec Y une autre fonction à spécifier. BARKER, SCHAEFFER, SHEARER et al. 2017
donnent alors les critères suivants afin d’obtenir un système bien posé :

Proposition 9. Supposons que les fonctions f et Y vérifient les conditions suivantes :

∂p Y − I

2p
∂I Y = f + I∂I f , (0.214)

∂I Y > 0, (0.215)

∂p f − I

2p
∂I f < 0. (0.216)

Alors la rhéologie CIDR est bien posée au sens de Hadamard.

Notons que l’équation (0.214) permet de déterminer f à partir de Y , et vice-versa.
Pour compléter la rhéologie, il suffit donc par exemple de spécifier la fonction Y
donnant la norme du déviateur. Plusieurs expressions pour la fonction Y donnant
un modèle bien posé sont proposées dans la littérature (voir par exemple BARKER,
SCHAEFFER, SHEARER et al. 2017, SCHAEFFER et al. 2019, et CHUPIN et al. 2024 dans un
modèle multiphasique prenant également en compte le gaz interstitiel).

Ces deux exemples montrent qu’il est possible d’écrire une version compressible
de la rhéologie µ(I ) qui prend en compte le phénomène de dilatance et qui est bien
posée (au sens de Hadamard). On voit également que cette écriture n’est pas unique,
et que des considérations supplémentaires sont nécessaires afin de choisir un modèle
précis (choix du coefficient µb(φ) pour la rhéologie de HEYMAN et al. 2017, choix
de la fonction Y (p,φ, I ) pour la rhéologie CIDR). Notons que HEYMAN et al. 2017
montrent que les différentes formulations sont équivalentes dans la limite des petits
changements de volume.

Une contribution de cette thèse est le résultat suivant, qui constitue une extension
du résultat 5 dans le cas d’une rhéologie compressible :

RÉSULTAT 7

Il est possible de modifier le modèle présenté dans le résultat 5 pour obtenir un
système d’équations consistantes à l’ordre 1 avec la rhéologie compressible de
HEYMAN et al. 2017. Les modifications consistent à

— Remplacer la moyenne sur la profondeur par une moyenne de Favre (i.e.
pondérée par la densité du milieu, qui est ici inhomogène) ;

— Redéfinir une des constantes du modèle afin de tenir compte de la dila-
tance ;

— Ajouter un facteur correctif à la loi de friction.
En particulier, on obtient que le nombre de Froude critique pour l’instabilité
des ondes de surface vaut pour cette rhéologie compressible et pour le modèle
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moyenné :

Fc = 4

5

√
1− 3

2
tan2θ+ 3

4

(µ2 − tanθ)(tanθ−µ1) tanθ

µ2 −µ1 − (µ2 − tanθ)(tanθ−µ1)∂µ lnφ|µ=tanθ
(0.217)

Ce modèle est présenté au chapitre 5.

3.4. Rhéologie des suspensions
Les travaux de recherche effectués pour écrire des rhéologies granulaires ont éga-

lement permis de faire des progrès dans la compréhension du comportement des
suspensions granulaires. Une suspension granulaire est un milieu granulaire immergé
dans un liquide. Du fait de ce liquide interstitiel, dont la densité est en général bien
plus importante que celle de l’air, les propriétés rhéologiques des suspensions granu-
laires diffèrent de celles des milieux granulaires secs. Néanmoins, les rhéologies de
ces deux milieux peuvent être énoncées de manière similaire. Dans ce paragraphe, on
présente des équations constitutives décrivant les suspensions granulaires, en mettant
en évidence la similarité avec les rhéologies présentées précédemment. On énonce en-
suite un modèle jouet de suspension granulaire, qui a été obtenu mathématiquement
par homogénéisation. Un des résultats de cette thèse est l’analyse mathématique de ce
modèle. On montre en effet l’existence de solutions particulières (ondes progressives),
et la stabilité asymptotique de ces solutions dans un espace d’énergie adapté.

3.4.1. Rhéologie µ(J )

Dans le cas d’un écoulement granulaire sec, on a vu précédemment que le milieu
est caractérisé par un nombre sans dimension I , appelé nombre inertiel. Ce nombre
inertiel permet de déterminer le coefficient de friction µ=µ(I ), ainsi que la fraction
de volume solide φ = φ(I ). Par analogie avec le nombre inertiel, CASSAR et al. 2005
introduisent dans le cas d’une suspension le nombre visqueux J , défini par

J = η f |γ̇|
p

, (0.218)

avec η f la viscosité du liquide interstitiel, |γ̇| le taux de déformation et p la pression.
À partir de mesures expérimentales dans le cas d’un cisaillement simple, François
BOYER et al. 2011 montrent pour les suspensions étudiées les relations suivantes :

|τ| =µ(J )p, et φ=φ(J ). (0.219)

On voit que ces équations constitutives sont les mêmes que pour un milieu granu-
laire sec (0.204), en remplaçant le nombre inertiel I par le nombre visqueux J . Boyer,
Guazzelli et Pouliquen (François BOYER et al. 2011) proposent pour le coefficient de
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friction la loi

µ(J ) =µ1 + µ2 −µ1

1+ Im/J
+ J + 5

2
φc

√
J . (0.220)

Comparativement à (0.196), les deux premiers termes, dépendant des coefficients
µ1 et µ2, modélisent une friction provenant du contact entre les particules et sont
écrits de manière similaire à la loi de friction pour un milieu granulaire sec, tandis que
les termes restants modélisent des interactions hydrodynamiques. La constante φc

désigne ici la fraction volumique solide maximale, obtenue pour J = 0. En effet, la loi
proposée par François BOYER et al. 2011 pour la fraction volumique solide s’écrit :

φ=φ(J ) = φc

1+p
J

. (0.221)

Ces relations sont présentées dans les variables p, |γ̇|, qui correspondent à des mesures
faites en contrôlant la pression de confinement. Dans le cas des suspensions, il est
également courant d’utiliser les variables φ, |γ̇|, qui correspondent à une fraction
volumique solide imposée. Dans ce cas, la relation (0.221) donnant φ en fonction J
permet d’écrire

J = J (φ) =
(
φc −φ
φ

)2

. (0.222)

En utilisant la définition du nombre J (0.218), on en déduit que la pression s’écrit

p = η f |γ̇|
J (φ)

= η f |γ̇|
(

φ

φc −φ
)2

. (0.223)

De même, la norme du déviateur est donnée par

|τ| =µ(J )p = η f |γ̇|
[

1+ 5

2
φ

(
φc

φc −φ
)
+µc (φ)

(
φ

φc −φ
)2]

, (0.224)

avec µc (φ) =µ1 + (µ2 −µ1)/[1+ Imφ
2(φc −φ)−2]. Lorsque φ tend vers 0, on voit que la

viscosité relative effective |τ|/(η f |γ̇|) est équivalente à 1+5φ/2. On retrouve la formule
théoriquement prédite par EINSTEIN 1905 ; EINSTEIN 1911. Notons qu’une justification
rigoureuse de cette formule a été obtenue mathématiquement en considérant N
particules en suspension dans un fluide de Stokes, et en utilisant des techniques
d’homogénéisation (SÁNCHEZ-PALENCIA 1985 ; LÉVY et al. 1985 ; HILLAIRET et al.
2020) ou un principe variationnel (HAINES et al. 2012). La formule d’Einstein est alors
obtenue en calculant la limite de la viscosité du mélange lorsque N tend vers l’infini,
tout en gardant une fraction volumique solide φ constante. Les termes d’ordres plus
élevés en φ dans le développement limité de la viscosité du mélange ont également
été déterminés (voir par exemple BATCHELOR et al. 1972 ; GÉRARD-VARET et al. 2020 ;
DUERINCKX et al. 2020).

Dans la limite φ→ φc , on voit que la viscosité effective et la pression divergent
comme (φc −φ)−2. L’interprétation de cette divergence est que plus on s’approche de
la fraction volumique maximale φc , plus le milieu est difficile à déformer. Cette diver-
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gence est confirmée quantitativement par de nombreuses mesures expérimentales,
comme c’est présenté par exemple dans l’article de GUAZZELLI et al. 2018 (voir Figure
10).

FIGURE 10. – Viscosité relative ηs , donnée par le quotient de la viscosité effective de
la suspension par la viscosité du liquide interstitiel, en fonction de la
fraction volumique réduite φ/φc . Figure issue de GUAZZELLI et al. 2018

Remarque 28. Dans le cas d’un milieu granulaire sec, la rhéologie µ(I )−φ(I ) prédit
également une divergence de la pression et du déviateur comme (φc −φ)−2 lorsque φ
tend versφc . En effet, en utilisant la définition du nombre inertiel I (0.206) et la relation
φ=φ(I ) (0.203), on peut écrire la pression comme

p = ρp d 2|γ̇|2
I (φ)2

, avec I (φ) = φc −φ
∆φ

. (0.225)

Par conséquent, la norme du déviateur s’écrit également

|τ| = µ(I (φ))

I (φ)2
ρp d 2|γ̇|2. (0.226)

3.4.2. Étude d’un modèle jouet

On présente ici l’étude mathématique d’un modèle jouet possédant quelques as-
pects non linéaires de la rhéologie µ(J) présentée au paragraphe précédent. On s’in-
téresse plus précisément aux effets de divergence de la viscosité effective lorsque la
fraction volumique φ s’approche de la fraction volumique critique φc dans un modèle
de mécanique des fluides. On ne considère pas ici toutes les équations de la rhéologie
µ(J), dont l’analyse mathématique est pour l’instant un problème ouvert. En parti-
culier, on se restreint au cas unidimensionnel, et on néglige totalement la pression.
On considère donc un système d’équations de type Navier-Stokes compressible sans
pression, avec un coefficient de diffusion dépendant de la densité et divergent pour
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φ→ φc . Notons que la nature des équations considérées ici est différente de celles
présentées dans la section 2.2 (problème hyperbolique), et nécessite par conséquent
des outils mathématiques différents. Le système s’écrit{

∂tφ+∂y (φu) = 0,

∂t (φu)+∂y (φu2) = ∂y (η(φ)∂y u),
(0.227)

avec un coefficient de diffusion donné par

η(φ) = f (φ)

(1−φ)γ
, (0.228)

où f (φ) > 0 est une fonction lisse et γ≥ 2. La fraction volumique maximale φc est ici
prise égale à 1 sans perte de généralité. Notons qu’un modèle similaire a été obtenu par
homogénéisation par LEFEBVRE-LEPOT et al. 2008, à partir d’un modèle microscopique
de particules solides en suspension dans un fluide de viscosité η f constante. Le
coefficient de diffusion homogénéisé vaut dans ce cas η(φ) = η f (1−φ)−1.

Pour étudier mathématiquement le modèle (0.227), une première étape est de le
reformuler afin de rendre les calculs plus simples. Pour cela, on profite du caractère
unidimensionnel pour introduire la coordonnée Lagrangienne de masse x telle que
dx = ρdy −ρudt , les équations étant posées sur R. Le système peut alors se réécrire{

∂t w = 0,

∂t v −∂x(µ(v)∂x v) = ∂x w,
(0.229)

avec v = 1/φ le volume massique (ou volume spécifique), µ(v) =φη(φ) le coefficient
de diffusion dans les nouvelles coordonnées et w = u −µ(v)∂x v la vitesse effective
introduite par BRESCH et DESJARDINS 2004, voir remarque 27. On peut alors chercher
des solutions particulières (v̄ , w̄) de ce système sous la forme d’ondes progressives, i.e.
dépendant uniquement de la variable ξ= x − ct . c > 0 est la vitesse de propagation.
On obtient alors que w̄ est constant, et que v̄ est donné par l’équation différentielle
ordinaire (EDO) :

d v̄

dξ
= c(v+− v̄)

µ(v̄)
. (0.230)

En supposant que v̄ atteint une limite finie en ±∞, on obtient que v̄ → v+ > 1 en +∞,
et v̄ → 1 en −∞. En particulier, φ tend en −∞ vers la fraction de volume maximale
φc = 1. On dit que le profil est partiellement congestionné.

Un résultat de cette thèse est la stabilité asymptotique de ces solutions. La stabi-
lité asymptotique est une propriété importante d’un point de vue mathématique
et physique. Elle permet en effet de montrer que des solutions proches des ondes
progressives présentées ici peuvent être observées même si la solution exacte est
légèrement perturbée. Elle donne également le comportement en temps long de ces
solutions. Plus précisément, en considérant une autre solution (v, w) du système
(0.227), et en notant (δv,δw) = (v, w)− (v̄ , w̄) la perturbation, on montre que si la
norme de la perturbation initiale est contrôlée dans un espace adéquat, alors la solu-
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tion (v, w) reste proche de l’onde progressive (v̄ , w̄). La norme utilisée pour contrôler
la perturbation initiale permet de borner notamment les quantités suivantes :

— les variables δV et δW , définies comme les intégrales de δv et δw et satisfaisant
une estimation d’énergie importante pour le caractère globalement bien-posé,
comme identifié par MATSUMURA et al. 1985 ;

— la variable δv/(v̄ −1), ce qui permet d’assurer la contrainte v > 1 (voir Figure 11).

FIGURE 11. – En bleu, profil de l’onde progressive v̄ . En rouge, intervalle dans le-
quel peut se trouver la solution v si on suppose une borne du type
∥δv∥L∞(R) < δ (à gauche, on voit que la contrainte v > 1 n’est pas assu-
rée) ou ∥δv/(v̄ −1)∥L∞(R) < δ (à droite).

Le résultat obtenu peut être énoncé ainsi :

RÉSULTAT 8 (DELEAGE ET MEHMOOD 2024)

Soit T > 0 et ET l’espace d’énergie défini par

ET := { f ∈C ([0,T ],L2(R)),µ(v̄)1/2∂x f ∈ L2((0,T )×R)}. (0.231)

Il existe δ> 0 tel que, pour toute perturbation initiale (δv0,δw0), si

∥δV0∥L2(R) +∥δW0∥H 2(R) +
∥∥∥∥ δv0

v̄ −1

∥∥∥∥
H 1(R)

≤ δ, (0.232)

alors la perturbation (δv,δw) existe sur (0,T ) et est unique dans ET .

Un résultat plus complet est disponible dans la partie III. On montre notamment
que si δw0 = 0, alors on peut prendre T =+∞ et on a ∥δv(t )∥L∞(R) → 0 lorsque t →∞.
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Première partie

Étude de la structure des équations
avec tenseur de Reynolds

modélisant des fluides parfaits

80



1. Symétrisation des équations
moyennées de Reynolds

Dans ce chapitre, on montre que les équations moyennées de Reynolds pour les
fluides compressibles sont symétrisables au sens de Friedrichs, en dimension d = 2
et 3, lorsque la pression s’annule. Ce chapitre est tiré de l’article suivant (DELÉAGE

2024) :
Deléage, É. (2024). Well-posedness of reynolds averaged equations for compressible

fluids with a vanishing pressure. Mathematical Methods in the Applied Sciences, 47(2),
817-824.

1. Introduction and main results
We study the Reynolds averaged equations for compressible fluids, where third-

order correlations are neglected. This system can be written in Eulerian coordinates
as



∂tρ+div(ρv) = 0, (1.1a)

∂t v + (v ·∇v)+ 1

ρ

(∇p +div(ρP )T )= 0, (1.1b)

∂t P + (v ·∇)P + ∂v

∂x
P +P

(
∂v

∂x

)T

= 0. (1.1c)

The variables are the averaged density ρ > 0, the averaged velocity v ∈Rd (d = 2 or
3), and P is the Reynolds stress tensor, P ∈ S++

d (R). The function p is the pressure of
the fluid and is a function of the density ρ, through an equation of state p = p(ρ). The
map ρ 7→ p(ρ) is supposed to be of class C 1 and non-decreasing. Typical pressure laws
are of the form p(ρ) = aργ, with a > 0 and γ> 0 two constants.

The tensor P is a classical Reynolds tensor appearing in the Reynolds averaging of
turbulent flows for barotropic compressible fluids (see Pope 2001, Wilcox et al. 1998,
Mohammadi et al. 1993). It also appears in the description of free surface shear flows,
where the averaging operator is the depth averaging (cf. Annexe C, A7 in Richard 2013
for a derivation of the model). In that latter case, the density ρ must be replaced by the
water depth, often denoted h. The pressure is then given by p(h) = g h2/2 (cf. Richard
2013 for instance).

System (1.1) is hyperbolic whenever p ′(ρ) ≥ 0 and P is definite positive, as it has
been proved in Richard 2013. Equation (1.1a) shows that the density ρ is conserved.
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The conservation of momentum ρv also holds: (1.1b) rewrites as

∂t (ρv)+div(ρv ⊗ v +pId +ρP )T = 0. (1.2)

One can also deduce from (1.1) the conservation of energy:

∂t e +div(ev +pv +ρP v) = 0, with e := 1

2
ρ|v |2 +ρE (ρ)+ 1

2
Tr(ρP ). (1.3)

The map ρ 7→ ρE (ρ) is called the volumic internal energy, and is linked to the pressure
via the relation p(ρ) = ρ2E ′(ρ). The term ρ|v |2/2 is the volumic kinetic energy of the
fluid, and the term Tr(ρP )/2 is the energy associated to the tensor P .

In Gavrilyuk and Gouin 2020, it was shown that system (1.1) admits a variational
formulation, as it is often the case in physics when the energy of a system is conserved.
Define the Lagrangian density

L (ρ, v,P ) := 1

2
ρ|v |2 −ρE (ρ)− 1

2
Tr(ρP ), (1.4)

and the corresponding action

A :=
∫ t1

t0

∫
Rd

L dxdt . (1.5)

Then one can show that (1.1b) is the Euler-Lagrange equation given by the stationary
action principle applied to the action (1.5), under the two constraints (1.1a) and (1.1c).

The tensor P admits an additional conservation law, sometimes called conservation
of enstrophy, that is a consequence of (1.1c) and can be written

∂t

(
detP

ρ2

)
+ v ·∇

(
detP

ρ2

)
= 0. (1.6)

Note that equation (1.1c) implies that the symmetry of P is conserved by the evo-
lution. Equation (1.6) then implies that, if P (t ) ∈ S++

d (R) for some instant t , then this
property is true for all times.

It has been proved in Gavrilyuk, Ivanova, et al. 2018 that system (1.1) does not
admit any further conservation law. Thus, in dimension d = 2 or 3, system (1.1) is
not conservative. Hence the usual symmetrisation method of Godunov (cf. Godunov
1961) and Lax and Friedrichs (cf. Friedrichs et al. 1971) for hyperbolic systems of
conservation laws (see for instance Serre 1999, pages 83-84) can not be used here.

However, one can show that system (1.1) is Friedrichs-symmetrizable when the
pressure vanishes. More precisely, we state the following theorem :

Theorem 1.1. Let d = 2 or 3. Suppose that ρ takes values in R∗+ and P takes values in
S++

d (R). Then the two following properties are equivalent:

1. System (1.1) is Friedrichs-symmetrizable
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2. The pressure p is constant: p ′(ρ) = 0, or the tensor P is a scalar matrix, i.e. there
exists λ=λ(t , x) ∈R such that P =λId .

Let us make few comments about this theorem:
— The tensor P =λId is a solution of system (1.1) only for trivial velocities; hence,

for applications of this result, the case p ′ = 0 seems more interesting.
— This property holds in the variables (ρ, v,P ). It could be possible that system

(1.1), written in different variables, appears to be symmetrizable even when
p ′ ̸= 0.

— When d = 1, system (1.1) is symmetrizable, even when p ′ ̸= 0. In fact, one can
prove that one-dimensional hyperbolic systems are always Friedrichs-symmetrizable
(cf. Panov n.d.). In higher dimension d ≥ 2, this does not hold anymore.

As a consequence of Theorem 1.1, we have the following result regarding the well-
posedness of system (1.1):

Proposition 1.1. Let d = 2 or 3, s > 1+ d/2 and U := R∗+ ×Rd × S++
d (R). Let Ȳ :=

(ρ̄, ū, P̄ ) ∈ U and Y0 taking values in U such that Y0 − Ȳ ∈ H s(Rd ). We consider the
Cauchy problem associated to (1.1) with initial data Y0. There exists T > 0 such that
(1.1) with p ′ = 0 has a unique classical solution Y (t ) in C 1([0,T ]×Rd ) with values in U

achieving the initial data Y (0) = Y0. Furthermore, Y − Ȳ belongs to C ([0,T ], H s(Rd ))∩
C 1([0,T ], H s−1(Rd )).

Proposition 1.1 is a consequence of Theorem 1.1 and of the theory of well-posedness
of Kato for quasilinear evolution equations (cf. Kato 2006). For a detailed proof of this
result, see for instance Sect. 10 in Benzoni-Gavage et al. 2006.

System (1.1) has been used over the last years in the modeling of turbulent flows,
including for numerical simulations (see Richard and Gavrilyuk 2013, Ivanova, Gavri-
lyuk, et al. 2017, Gavrilyuk, Ivanova, et al. 2018, Ivanova and Gavrilyuk 2019 ). However,
the well-posedness of (1.1) in dimension d ≥ 2 is still uncertain today. Proposition
1.1 states an answer to this question in the case of a vanishing pressure. One could
also obtain system (1.1) with p ′ = 0 when modeling a fluid for which the pressure
gradient ∇p is negligible compared to the turbulence of the fluid div(ρP ) in (1.1b).
This amounts to consider the high Mach number limit. This limit was studied by
various authors in the Euler and Navier-Stokes cases and can lead to a vanishing
pressure gradient (Humpherys et al. 2010, Qu et al. 2020). The hypothesis p ′ = 0 can
also be found in the literature in a model called “pressureless gas dynamics". This
system appears in different physical contexts. It is used in cosmology in order to
model galaxies formation in the presence of gravitational instability (see Zel’Dovich
1970). These equations also arise as an hydrodynamic limit of kinetic equations, when
considering a cold plasma (see Bouchut 1994), or the granular gases equation (see
Jabin et al. 2017). Another field of applications is the study of collective behaviors, in
which the pressureless Euler equations appear with additional non-local dissipative
terms (Carrillo et al. 2017, Figalli et al. 2018). Eventually, the study of the pressure-
less equations is motivated by numerical analysis: some numerical solvers for Euler
equations also use the case p ′ = 0 as an intermediate step in their splitting method,
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this allows to decouple the convective subsystem from the acoustic one (Baraille et al.
1992, see also Iampietro et al. 2018).

The mathematical analysis of the pressureless Euler equations is constrained by the
fact that the system is only weakly hyperbolic. As a consequence, phenomena like
creation of vacuum or high concentrations (delta shocks) can occur (see for instance
Zel’Dovich 1970, Bouchut 1994, Bouchut, Jin, et al. 2003, Berthon, Breuß, et al. 2006).
System (1.1) with p ′ = 0 can thus be seen as a hyperbolic version of the pressureless
gas model. In this sense, the Reynolds tensor P brings more regularity to the model.

Notations
We denote ∂i := ∂/∂xi the partial derivative of the variable xi , for 1 ≤ i ≤ d . If

f :Rd →R is a scalar function, we denote by ∇ f ∈Rd the gradient of f , i.e. the vector
field of components ∂i f , 1 ≤ i ≤ d .

If Z = (Z1, . . . , Zn) :Rd →Rd is a vector field, the divergence of Z is the scalar function
defined by

div(Z ) := ∂1Z1 +·· ·+∂n Zn .

We also denote by ∂Z /∂x the Jacobian matrix of Z , i.e. the matrix of coefficients
(∂Z /∂x)i , j = ∂Zi /∂x j , for 1 ≤ i , j ≤ d .

If Z = (Zi )1≤i≤d and Z ′ = (Z ′
i )1≤i≤d are two vector fields, we denote Z⊗Z ′ the second

order tensor defined by Z ⊗ Z ′ := Z (Z ′)T , i.e. the matrix of coefficients (Z ⊗ Z ′)i , j =
Zi Z ′

j , for 1 ≤ i , j ≤ d .

If A : Rd → Md (R) is a second order tensor, we defined the divergence of A as the
line vector of Rd whose i -th component is given by the divergence of the i -th column
of A.

For any positive integer d , we denote Id ∈ Md (R) the identity matrix of size d . We
denote S++

d (R) the set of symmetric definite positive matrices, i.e. the symmetric
matrices of size d with a positive spectrum.

2. Proof of the theorem
We now give the proof of Theorem 1.1.

Proof. We write system (1.1) in matricial form:

∂t Y + A(Y ,∇)Y = 0, with Y :=
ρv

P̃

 ∈R1+d+d(d+1)/2

and, if ξ= (ξi )1≤i≤d ∈Rd ,

A(Y ,ξ) :=

 v ·ξ ρξT 0
1
ρ (p ′(ρ)Id +P )ξ (v ·ξ)Id C (ξ)

0 D(ξ) (v ·ξ)Id(d+1)/2

 . (1.7)
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When d = 2, the symmetric matrix P = (Pi j )1≤i , j≤2 can be identified as a vector
P̃ ∈R3 given by

P̃ :=
P11

P12

P22

 .

The matrices C (ξ) and D(ξ) are then given by

C (ξ) :=
(
ξ1 ξ2 0
0 ξ1 ξ2

)
and D(ξ) :=

2P11ξ1 +2P12ξ2 0
P21ξ1 +P22ξ2 P11ξ1 +P12ξ2

0 2P12ξ1 +2P22ξ2

 .

When d = 3, the symmetric matrix P can be identified as a vector P̃ ∈R6:

P̃ :=



P11

P12

P13

P22

P23

P33

 .

The matrices C (ξ) and D(ξ) are then given by

C (ξ) :=
ξ1 ξ2 ξ3 0 0 0

0 ξ1 0 ξ2 ξ3 0
0 0 ξ1 0 ξ2 ξ3


and

D(ξ) :=



2(Pξ)1 0 0
(Pξ)2 (Pξ)1 0
(Pξ)3 0 (Pξ)1

0 2(Pξ)2 0
0 (Pξ)3 (Pξ)2

0 0 2(Pξ)3

 ,

where (Pξ)i denotes the i -th component of the vector Pξ.

We first show the implication (2) ⇒ (1)

Namely, if p ′ = 0 or P =λId , then system (1.1) is Friedrichs-symmetrizable.
We thus suppose that p ′ = 0 or P =λId .
Consider S = S(Y ) ∈ S++

n (R) (with n = (d +1)(d +2)/2) defined as a block matrix,
compatible with A:

S =
1 0 0

0 S2 0
0 0 S3

 , with S2 ∈ Md (R) and S3 ∈ Md(d+1)/2(R). (1.8)
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Note that S is symmetric definite positive if and only if the matrices S2 and S3 are also
symmetric definite positive.

We can now compute the product S A by block matrix mutiplication. We obtain that

S A =

 v ·ξ ρξT 0
1
ρS2(p ′(ρ)I d +P )ξ (v ·ξ)S2 S2C (ξ)

0 S3D(ξ) (v ·ξ)S3

 (1.9)

Case d = 2.

Let us choose

S2 :=µP−1 and S3 :=µ
 1

2 q2
11 q12q11

1
2 q2

12
q12q11 q11q22 +q2

12 q12q22
1
2 q2

12 q12q22
1
2 q2

22

 ,

where we denoted

P−1 =
(

q11 q12

q12 q22

)
∈ S++

2 (R), (1.10)

and

µ :=


ρ2 when p ′(ρ) = 0,

ρ2 λ

p ′(ρ)+λ when P =λI d .
(1.11)

The matrix S2 is symmetric definite positive.
We see that the principal minors ofµ−1S3 are given by M1 = 1

2 q2
11 > 0, M2 = 1

2 q2
11(q11q22−

q2
12) > 0, and M3 = 1

4 (q11q22 − q2
12)3 > 0 (recall that P is positive definite). Hence by

Sylvester’s criterion, S3 is definite positive, and S, defined by (1.8), is a positive definite
matrix.

We compute that
1

ρ
S2

(
p ′(ρ)I d +P

)
ξ= ρξ, (1.12)

S2C (ξ) =µ
(

q11ξ1 q11ξ2 +q12ξ1 q12ξ2

q12ξ1 q12ξ2 +q22ξ1 q22ξ2

)
,

and, since qi 1P1 j +qi 2P2 j = δi j by (1.10),

S3D(ξ) =µ
 q11ξ1 q12ξ1

q12ξ1 +q11ξ2 q22ξ1 +q12ξ2

q12ξ2 q22ξ2

= [S2C (ξ)]T .

Hence for any Y ∈U , and for any ξ ∈R2, the matrix S(Y ) is symmetric definite positive
and (1.9) shows that the matrix S(Y )A(Y ,ξ) is symmetric. As a consequence, (1.1) is
Friedrichs-symmetrizable when d = 2.
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Case d = 3.

Define again S by equation (1.8). Choose S2 =µP−1 with µ as in (1.11), such that S2

is symmetric definite positive and (1.12) holds again. Define S3 by

S3 :=µ



1
2 q2

11 q11q12 q11q13
1
2 q2

12 q12q13
1
2 q2

13
q11q12 q11q22 +q2

12 q11q23 +q12q13 q12q22 q12q23 +q22q13 q13q23

q11q13 q11q23 +q13q12 q11q33 +q2
13 q12q23 q12q33 +q23q13 q13q33

1
2 q2

12 q12q22 q12q23
1
2 q2

22 q22q23
1
2 q2

23
q12q13 q12q23 +q13q22 q12q33 +q13q23 q22q23 q22q33 +q2

23 q23q33
1
2 q2

13 q13q23 q13q33
1
2 q2

23 q23q33
1
2 q2

33

 ,

where we denoted again

P−1 :=
q11 q12 q13

q12 q22 q23

q13 q23 q33

 .

We see that S3 is symmetric. Furthermore, the principal minors of µ−1S3 are
given by M1 = q2

11/2 > 0, M2 = q2
11(q11q22 −q2

12)/2 > 0, M3 = q3
11det(P−1)/2 > 0, M4 =

q11(q11q22−q2
12)2det(P−1)/4 > 0, M5 = (q11q22−q2

12)2det(P−1)2/4 > 0 and finally M6 =
det(P−1)4/8 > 0. Hence, by Sylvester’s criterion, S3 is definite positive and S is sym-
metric definite positive.

We also check that
S3D(ξ) = [S2C (ξ)]T .

Hence equation (1.9) shows that S A is symmetric, and, consequently, (1.1) is Friedrichs-
symmetrizable when d = 3.

We now show that (1) ⇒ (2).
Suppose that system (1.1) is Friedrichs-symmetrizable, i.e. there is a matrix S such

that the product S A is symmetric.
We write S as a block matrix, compatible with A:

S :=
 S1 α β

αT S2 γ

βT γT S3

 .

We compute the product S A by block multiplication. Since S A is symmetric, for any
block of S A, denoted (S A)i , j (1 ≤ i , j ≤ 3), we must have (S A)i , j = (S A)T

j ,i . For i = j = 3,
we obtain the constraint

γT C (ξ)+ (v ·ξ)S3 =
[
γT C (ξ)+ (v ·ξ)S3

]T
.

Since S3 is symmetric, we deduce that the product γT C (ξ) is symmetric, for any ξ ∈Rd .
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By computing explicitly the product, we obtain that the only possibility is that γ= 0.
For i = 1 and j = 3, we obtain the constraint

[αC (ξ)+ (v ·ξ)β]T = (v ·ξ)βT + 1

ρ
γT (p ′(ρ)I d +P )ξ.

Since γ = 0, we obtain that αC (ξ) = 0, for any ξ ∈ Rd . By computing explicitly the
product, we also obtain that α= 0. Hence S has to be of the form

S =
S1 0 β

0 S2 0
βT 0 S3

 .

For i = 2 and j = 3, we obtain the constraint

ρβT ξT +S3D(ξ) = [S2C (ξ)]T (1.13)

Solving the linear system (1.13) for S2,S3 and β gives after some computations that
there exists two constants λ1,λ2 such that

S2 =λ1P−1 and β=
{

λ2(q11,2q12, q22) when d = 2,

λ2(q11,2q12,2q13, q22,2q23, q33) when d = 3.
(1.14)

Note that it follows from these computations that βD(ξ) = 2λ2ξ
T .

For i = 1 and j = 2 we obtain the constraint

1

ρ
S2(p ′(ρ)I d +P )ξ= [

S1ρξ
T +βD(ξ)

]T = (S1ρ+2λ2)ξ. (1.15)

Equation (1.15) implies that S2 is proportional to (p ′(ρ)I d +P )−1. Since S2 is also
proportional to P−1 by (1.14), we obtain that the two matrices P and P +p ′(ρ)I d are
proportional (recall that S2 is invertible). Hence p ′ = 0 or P =λI d .
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2. Étude de l’hyperbolicité de
modèles d’écoulements
diphasiques turbulents obtenus
par principe variationnel

Dans ce chapitre, on présente une classe de systèmes hyperboliques modélisant des
écoulements diphasiques à deux vitesses. Ces systèmes peuvent être obtenus par le
principe d’action stationnaire de Hamilton, avec des contraintes conventionnelles :
conservation de la masse pour chaque composante. Les équations impliquent la
conservation de la quantité de mouvement totale et de l’énergie totale. L’hyperbolicité
est garantie pour de petites vitesses relatives, i.e. près de l’équilibre, par la présence de
turbulence prise en compte à l’aide d’un tenseur de Reynolds. L’incorporation de ce
tenseur aux équations est faite via l’addition d’un terme turbulent dans l’énergie po-
tentielle apparaissant dans le lagrangien du modèle. Plusieurs formes sont proposées
pour le terme turbulent, et celles permettant d’obtenir un système d’équations hyper-
boliques sont caractérisées par un critère général. La présence du tenseur de Reynolds
est cruciale pour l’hyperbolicité. En effet, s’il est retiré du lagrangien, les équations
correspondantes ne sont pas hyperboliques lorsque la vitesse relative est petite. Ce
chapitre est tiré d’un article publié dans la revue Communications in Mathematical
Sciences (DELEAGE 2025) :

Deléage, E. (2025). Hyperbolicity study of models for turbulent two-phase flows
obtained from the variational principle. Communications in Mathematical Sciences,
23(6), 1631-1668

1. Introduction and main results
Multi-phase flow modeling aims to describe the simultaneous flow of different ma-

terials (solid, liquid, gas). It has a wide range of applications in biology, geosciences
and industry, and is an active area of research at the intersection between physics, me-
chanics and mathematics. In this study, we focus on the case of two phases interacting
with each other. We derive new two-phase flow models from Hamilton’s principle, and
we show that the presence of turbulence guarantees the hyperbolicity of the resulting
equations.
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1.1. Different multiphase flow models and hyperbolicty
criterion

The multi-phase flow denomination can be used for very diverse phenomena occur-
ing at various scales (Drew et al. 2006). Let us give some examples that can be found
in nature. In geophysics, gravity driven flows such that rock, ice or snow avalanches
and pyroclastic flows can be seen as multi-phase flows made of solid particles flowing
in a surrounding gas (Chupin et al. 2024,Gray and Ancey 2011). Lava can also be
modeled as a liquid-gas two phase flow (see the recent studies Narbona-Reina et al.
2024, Burgisser et al. 2024). In biology, the flow of human blood can be modeled
as a suspension of red blood cells immersed in a viscous liquid (plasma) (Jung et al.
2006, Dong et al. 2023). Multi-phase flow theory is also used at the planetary scale in
climate science, to model for instance density stratified oceans, or ocean-atmosphere
couplings (see Vallis 2017).

In order to model these flows with accuracy, it is necessary to use models that
take into account the specificity of each situation. The kind of model used usually
depends on key features of the multi-phase flow, such as the nature of each component
and the topology of the mixture. The microscopic description tracks the motion
and interactions of individual particles. It is well-adapted to the study of granular
suspensions when the number of solid particles is small (see for instance Lefebvre
et al. 2007). When it is not possible to track each particle, a continuous description
has to be used. There are two main kinds of continuous models for two-phase flows.
When it is possible to identify distinct regions made of one phase and interacting
with each other inside the flow, a separated two-phase system with interfaces can
be used. This is the case for instance with the multi-layers models (see for instance
Baines 2022). When the scale of these “one component regions" is much smaller than
the typical scale of the motion, or when the two phases are dispersed, it is better
to use an averaged description. In this kind of model, the two species are present
at each space point, in a proportion given by volumes fractions. The dynamics is
described by extended version of Euler or Navier-Stokes equations. Some models
then use simplifying hypotheses in order to only keep one averaged velocity for all the
phases (as in Chupin et al. 2024 for example) . In other cases, the full complexity of the
dynamics is taken into account and the velocity of each phase is a distinct unknown
of the model. For instance, this is the case of the class of models presented in Coquel
et al. 2014 that includes the Baer-Nunziato model.

In the following, we will focus on this last approach, but the three approaches are
linked. Indeed, a way to derive a fully dispersed model is to start from a microscopic or
a separated one, and to apply an averaging process. Closure relations are then needed
in order to express averages of nonlinear and interfacial terms. An introduction to
averaging techniques can be found in Drew et al. 2006. For the link between separated
and dispersed phase flow models, see also Drui et al. 2019. For more recent work on
the topic, see Bresch, Burtea, et al. 2022 and Bresch, Narbona-Reina, et al. 2024.

We shall now give a brief presentation of an important mathematical feature of
reversible multi-phase continuum models, which is the hyperbolicity property. The
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hyperbolicity property is an algebraic criterion that guarantees interesting behaviours
when it is satisfied. From a mathematical point of view, it provides local well-posedness
for the model. It means that, starting from a regular enough initial data, there exists
a unique solution, which depends continuously on the initial data. From a physical
point of view, the propagation of waves occurs at finite speed in hyperbolic systems,
which is crucial for predictability and causality. For numerical purposes, hyperbolic
systems can be solved by well-known and robust schemes. For an introduction to
hyperbolic systems, see for instance the book of Benzoni-Gavage et al. 2006.

A priori, the hyperbolicity property is not satisfied in every multi-phase flow model
(see below). In the framework of multi-velocity models, the hyperbolicity is often
equivalent to a condition on the relative velocities, i.e. on the difference between
the velocity of two different phases. In Saleh et al. 2020 for instance, it is shown that
the hyperbolicity of a large class of barotropic systems is equivalent to the condition
|v1 −vk | ̸= ck ,k = 2, . . . , N , where N is the number of different phases, vi is the velocity
of the phase i and ci is the sound speed of the phase i .

In the following, we will show that the introduction of turbulence in multi-phase flow
models enables to guarantee that the hyperbolicity property is satisfied. Furthermore,
the resulting models can be obtained from a variational principle.

1.2. Variational formulation of fluid mechanics
Let us now describe the method that will be used in order to derive the multi-phase

models. It is called Hamilton’s stationary action principle. This principle offers a
unified way to formulate the governing evolution equations of many physical systems.
It enables to obtain the governing evolution equations from a scalar function called
the Lagrangian. The Lagrangian L is a function of the trajectory of the particles and
is defined as the difference between the kinetic and potential energies of the system.
Once the Lagrangian of the system is specified, one can define the associated action,
which is the time integral of the Lagrangian. The stationary action principle then
states that the particles follow a trajectory for which the action is stationary, eventually
with additional constraints on the motion. The equations stating that the action is
stationary characterize the trajectory and are called Euler-Lagrange equations.

Let us give some examples in the context of continuous media. In this case, one
often defines a Lagrangian density L , which corresponds to a Lagrangian per unit
of volume. The Lagrangian L is then given by the integral of the Lagrangian density
L over the whole domain. For a compressible barotropic fluid of density ρ and of
velocity v , the Lagrangian density can be defined as

L := 1

2
ρ|v |2 −ρE (ρ).

The term ρ|v |2/2 is the density of kinetic energy of the fluid, and the term ρE (ρ) is
called the density of internal energy. It is linked to the pressure of the fluid via the
Maxwell relation p(ρ) := ρ2E ′(ρ). The trajectory, denoted x(t , X ), and the velocity are
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related by the following ordinary differential equation (ODE):

∂t x(t , X ) = v(t , x(t , X )), x(0, X ) = X . (2.1)

The capital letter X is used for the initial position of the particles, also called the
Lagrangian coordinate. The letter x stands for the position of the particle in motion,
also called the Eulerian coordinate. In order that L be a function of the trajectory
only, one must specify how the density ρ depends on the trajectory. This is done by
imposing the constraint of mass conservation, via the equation

∂tρ+div(ρv) = 0. (2.2)

With this constraint, one can apply the stationary action principle and obtain the cor-
responding Euler-Lagrange equation, which is an evolution equation for the velocity
(see for instance Burtea, Gavrilyuk, et al. 2024 for detailed computations):

∂t v + (v ·∇)v + 1

ρ
∇p(ρ) = 0. (2.3)

Equations (2.2) and (2.3) form together a well-known system called Euler compressible
barotropic equations. This system is hyberbolic if and only if the pressure is an
increasing function of the density, which amounts to require that the map ρ 7→ ρE (ρ)
is convex. Other properties of this system are the conservation of momentum:

∂t (ρv)+div(ρv ⊗ v +pId )T = 0,

and of total energy:

∂t e +div[(e +p)v] = 0, with e := 1

2
ρ|v |2 +ρE (ρ)

for smooth solutions. Hamilton’s stationary action principle provides an additional
interpretation of these conservation laws. Indeed, Noether’s Theorem (see Noether
1918) states that conserved quantities correspond to symmetries of the Lagrangian.
Here, the conservation of momentum comes from the spatial translation invariance
of L , and the conservation of energy is related to the invariance by time translation.

We now move on to the case of a two phase flow. The two phases will be denoted by
the indices 1 and 2. The density, velocity and internal energy are respectively denoted
by ρi , vi and Ei , i = 1,2. Since the two velocities are different, it is also the case for the
trajectories of the particles of the phase 1 and 2, denoted by xi and defined as in (2.1)
by

∂t xi (t , Xi ) = vi (t , xi (t , Xi )), xi (0, Xi ) = Xi , i = 1,2.

The volume fraction of the phase i is denoted by αi . The two volume fractions are
linked by the constraint

α1 +α2 = 1, (2.4)
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which means that there is no vacuum. It is important to distinguish the true density
ρi of each phase from the material density ρi ,0 := ρi /αi . The constraint of mass
conservation only holds for the true densities:

∂tρi +div(ρi vi ) = 0, i = 1,2. (2.5)

A possible choice to define the Lagrangian density of the mixture is to say that the
kinetic (resp. internal) energy of the mixture is the sum of the kinetic (resp. internal)
energy of each phase, weighted by the volume fractions:

L = 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
. (2.6)

Physically, this means that there is no energy associated to the interactions between
the two phases. Hamilton’s principle under the constraints given by Equation (2.4) and
Equations (2.5) yields a system of evolution equations for the variables (ρ1, v1,ρ2, v2),
for which the two pressures are equal (p1 = p2) and the volume fractions are given
functions of the densities: αi =αi (ρ1,ρ2). This system is hyperbolic if and only if the
relative velocity is greater than an explicit lower bound: the system is hyperbolic when

|v2 − v1|2 > ρc2
w

[(
α1

ρ1

)1/3

+
(
α2

ρ2

)1/3
]3

,

where cw is the speed of sound of the mixture and ρ := ρ1 +ρ2 is the total density
(see Gavrilyuk 2011). This lower bound for the relative velocity can be problematic in
situation where the two velocities are close, e.g. near equilibrium. Indeed, when the
criterion is not fulfilled, complex characteristics appear.

In Gavrilyuk 2020, Hamilton’s principle was again used together with the same
Lagrangian (2.6) and the same constraints, and a different system was obtained, in-
cluding an additional “lift" term. This counter-intuitive fact can be explain by the
choice of the trajectories made by the author. Indeed, instead of defining the La-
grangian as a function of the trajectories of each phase x1 and x2, the mean velocity of
the fluid v := (ρ1v1 +ρ2v2)/ρ (with ρ = ρ1 +ρ2 the total density) was used to define
a third trajectory x(t , X ), given by the ODE ∂t x(t , X ) = v(t , x(t , X )). The Lagrangian
was then considered as a function of the trajectories x(t , X ) and x2(t , X2). As a conse-
quence, the evolution equation obtained for the velocity vi differs by an additional
lift term equal to curl(v1)∧ (v − vi ) (i = 1,2). The apparition of these lift terms is thus
explained by the change of reference frame. Even if the obtained system is different,
the hyperbolicity criterion remains unchanged for this modified model. In particular,
the system is not hyperbolic when the norm of the relative velocity is small (Gavrilyuk
2020,Gavrilyuk 2011).

One possible interpretation of this lack of hyperbolicity is that some interaction
terms are missing and should be added in the Lagrangian. In Gavrilyuk and Saurel
2002, an extension of the kinetic energy by addition of a term of the form (dα1/d t )2

modeling inertia enabled to obtain an unconditional hyperbolicity for a model of
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bubbly fluid (liquid-gas interaction). Allowing the Lagrangian to depend on derivatives
of the unknowns is frequent in multi-fluid modeling. This is done for instance in
Korteweg-type models, used in the context of liquid vapor mixture with a diffuse
interface, and for which the Lagrangian depends on the gradient of the density (see
e.g. Giesselmann et al. 2017).

1.3. Models studied and main results
In this work, we will show that two phase flow models that are hyberbolic for small

relative velocity can be obtained from Hamilton’s stationary action principle by adding
an additional term to the Lagrangian, corresponding to a turbulent interaction. More
precisely, we will consider the following Lagrangian density:

L = 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− r

2
Tr(P ),

where r ∈ {ρ1,ρ2,ρ} is either the density of one of the two phases, or the total density,
depending on the choice of the model, and P is the Reynolds stress tensor. P is a sec-
ond order symmetric definite positive tensor whose evolution equation is prescribed
as an additional constraint to the model and is given by

∂t P + (u ·∇)P + ∂u

∂x
P +P

(
∂u

∂x

)T

= 0, (2.7)

where the velocity u drives the evolution of the tensor P and is given by u ∈ {v1, v2, v}
depending on the choice of the model.

The Reynolds stress tensor appears in the context of turbulent flows when a Reynolds
averaging is performed. The tensor P is then obtained from the second order correla-
tions of the velocity (see Pope 2001). Equation (2.7) is classical and appears whenever
third order correlations are neglected (Mohammadi et al. 1993, Wilcox et al. 1998). It
was shown in Teshukov 2007 that the same equation structure appears in the context
of sheared shallow-water flows. In this context, the averaging operator is the depth-
averaging. In the compressible barotropic case, Reynolds averaged equations form
a system of hyperbolic equations (see Berthon, Coquel, et al. 2002). In the previous
study of the author Deléage 2024, it was proved that this system of equations is sym-
metric hyperbolic if and only if the pressure is constant or the tensor P is scalar. The
proof that Reynolds averaged equations can be obtained from Hamilton’s stationary
principle was presented in Gavrilyuk and Gouin 2020, in the case of a one phase flow.

Here, we aim to extend the Reynolds averaged equations to the case of a two phase
flow. For two phases, there are various possibilities regarding the tensor P . Indeed,
the turbulence can be carried either by one of the two phases, by the two phases, or by
the mixture itself. We describe these different cases below.
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Turbulence carried by the mixture velocity
Our first result concerns the case of a turbulence carried by the mean velocity. A

possible interpretation is that the turbulence is caused by the mixture of the two
phases. We thus first consider the following Lagrangian:

L = 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− ρ

2
Tr(P ), (2.8)

with convex internal energies, and assume that the evolution equation of P is given by

∂t P + (v ·∇)P + ∂v

∂x
P +P

(
∂v

∂x

)T

= 0, (2.9)

with v the mean velocity, associated to the conservation of total density:

∂tρ+div(ρv) = 0

(this last equation being obtained by summing the conservation equation on ρ1 and
ρ2). Assuming Equations (2.5) and (2.9) as constraints, the full system obtained by
Hamilton’s principle is given by (see Section 2 for the derivation):

∂tρi +div(ρi vi ) = 0, i = 1,2, (2.10a)

∂t vi + (vi ·∇vi )+curl(v2)∧ (v − vi )+∇(Ui )+ 1

ρ
div(ρP )T = 0, i = 1,2, (2.10b)

∂t P + (v ·∇)P + ∂v

∂x
P +P

(
∂v

∂x

)T

= 0. (2.10c)

The pressure of the system is defined by

p = p1 = p2, with pi :=
(
ρi

αi

)2

E ′
i

(
ρi

αi

)
, i = 1,2.

The relation p1 = p2 is the Euler-Lagrange equation associated to the variable α1. It
enables to express the volume fractionsα1 andα2 = 1−α1 as functions of the densities
ρ1,ρ2 only via the implicit functions theorem. The functions Ui that appear in (2.10b)
can then be expressed as

Ui (ρ1,ρ2) :=
(
∂

∂ρi

[
ρi Ei

(
ρi

αi

)])∣∣∣∣
αi=αi (ρ1,ρ2)

i = 1,2. (2.11)

As a consequence of the convexity of the internal energies ρi Ei

(
ρi
αi

)
, the partial deriva-

tives of the potentials Ui satisfy

a1 := ∂U1

∂ρ1
> 0, b := ∂U1

∂ρ2
= ∂U2

∂ρ1
> 0, a2 := ∂U2

∂ρ2
> 0, (2.12)
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as well as the additional relation

a1a2 −b2 = 0. (2.13)

System (2.10) admits two additional conservation laws. For smooth solutions, the
total momentum ρv is conserved:

∂t (ρv)+div(ρ1v1 ⊗ v1 +ρ2v2 ⊗ v2 +pI d +ρP )T = 0, (2.14)

as well as the total energy

∂t (e1 +e2)+div(e1v1 +e2v2 + (α1v1 +α2v2)p +ρP v)T = 0. (2.15)

The energy of each phase is given by

ei := 1

2
ρi |vi |2 +ρi Ei

(
ρi

αi

)
+ 1

2
ρi TrP, i = 1,2,

Once again, the variational formulation of System (2.10) enables to relate the con-
servation laws with symmetries of the Lagrangian density (2.8). Indeed, Noether’s
theorem states that the conservation of momentum (2.14) is associated to the in-
variance of (2.8) by spatial translations, while the conservation of energy (2.15) is
associated to the invariance by time translation.

Note the presence of the lift term curl(v2)∧ (v − vi ) in the evolution equation of vi .
As explained before, this term appear because the Lagrangian was considered as a
function of the two trajectories x1(t , X1) associated to v1 and x(t , X ) associated to the
mean velocity v . The choice of the trajectory x(t , X ) is inevitable in the derivation
of the equations in order to be able to express the constraint (2.9) in Lagrangian
coordinates (see the detailed derivation in Section 2). Since the lift terms depend on
the choice of the trajectories and are uncommon in the literature, we also study a
simpler version of System (2.10), where the lift terms are removed:

∂tρi +div(ρi vi ) = 0, i = 1,2, (2.16a)

∂t vi + (vi ·∇vi )+∇(Ui )+ 1

ρ
div(ρP )T = 0, i = 1,2, (2.16b)

∂t P + (v ·∇)P + ∂v

∂x
P +P

(
∂v

∂x

)T

= 0. (2.16c)

The hyperbolicity of Systems (2.10) and (2.16) is characterized by the following theo-
rem:

Theorem 2.1. (Hyperbolicity of two-phase flow with a turbulence carried by the mean
velocity)

Let us denote ρi ,0 := ρi /αi the material density of each fluid, for i = 1,2. Let also

θ := ρ1ρ2
(p

a1 −p
a2

)2 − 1

2

(
ρ1

p
a1 +ρ2

p
a2

)2 , (2.17)
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a1, a2 being defined in (2.12). Then it holds that:
— In dimension d = 1, the lift terms of Equation (2.10b) vanish and System (2.10)

is hyperbolic whenever ρ1,0 ̸= ρ2,0, for small relative velocity. In other words,
there exists a constant C =C (ρ1,ρ2,P ) > 0 such that (2.10) is hyperbolic whenever
|v1 − v2| <C .

— When d = 2, suppose again that ρ1,0 ̸= ρ2,0. Also suppose that

|v1 − v2| <C , and either ρP > θId or ρP < θId . (2.18)

Then both System (2.10) and System (2.16) are hyperbolic.
— When d = 3, system (2.16) is hyperbolic under the assumptions ρ1,0 ̸= ρ2,0 and

(2.18). Under these two assumptions, System (2.10) is only weakly hyperbolic.
In dimension 2 and 3, if the condition ρP > θI d or ρP < θI d is not satisfied, System
(2.10) and (2.16) are only weakly hyperbolic.

The fact that the hyperbolicity of the system is improved after removing the lift
terms is quite surprising and is a consequence of the presence of the Reynolds stress
tensor. Indeed, as already explained in the end of paragraph 1.2, the hyperbolicity
criterion is not affected by the addition or removal of lift terms for a two-phase flow
without Reynolds stress tensor. See also Remark 2.2 below.

Turbulence carried by one of the two phases
We now suppose that the turbulence is only carried by one phase, say the phase 2.

We thus consider the following Lagrangian :

L := 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− 1

2
ρ2Tr(P2). (2.19)

We use the superscript 2 for the tensor P2 to insist on the fact that it is carried by the
phase two. As a consequence, we assume that the evolution of P2 is given by

∂t P2 + (v2 ·∇)P2 + ∂v2

∂x
P2 +P2

(
∂v2

∂x

)T

= 0. (2.20)

We also impose the conservation of the two densities:

∂tρi +div(ρi vi ) = 0, i = 1,2. (2.21)

In order to lighten the presentation, the system obtained is given by Equation (2.52) of
Section 4. The result concerning this system is the following:

Theorem 2.2. (Hyperbolicity of two-phase flow with a turbulence carried by one phase
only)

The hyperbolicity of the system obtained by Hamilton’s principle from the Lagrangian
(2.19) and the constraints (2.20) and (2.21) can be characterized as follows:
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— When d = 1, System (2.52) is hyperbolic for small relative velocity |v1 − v2|, i.e.
there exists C =C (ρ1,ρ2,P2) > 0 such that (2.52) is hyperbolic when |v1 − v2| ≤C .

— When d = 2,3 let

µ := ρ1a1 − 1

2
ρ2a2

and assume that either P2 > µId or P2 < µId . Then (2.52) is hyperbolic for |v1 −
v2| ≤C . If the condition P2 >µId or P2 <µId is not satisfied, System (2.52) is only
weakly hyperbolic.

Turbulence carried by each of the two phases
We also study the case of the mixture of two turbulent phases. In other words, each

phase is endowed with a Reynolds stress tensor denoted Pi , i = 1,2. The Lagrangian
density is the following:

L := 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− 1

2
ρ1Tr(P1)− 1

2
ρ2Tr(P2). (2.22)

The densities are still conserved:

∂tρi +div(ρi vi ) = 0, i = 1,2.

The evolution equations for P1,P2 are given by

∂t Pi + (vi ·∇)Pi + ∂vi

∂x
Pi +Pi

(
∂vi

∂x

)T

= 0, i = 1,2. (2.23)

In order to lighten the presentation, the system obtained is given by Equation (2.54) of
Section 4. The result concerning this system is the following:

Theorem 2.3. (Hyperbolicity of the mixture of two turbulent phases)
The hyperbolicity of the system obtained by Hamilton’s principle from the Lagrangian

(2.22) under the constraints of mass conservation and (2.23) can be characterized as
follows:

— When d = 1, System (2.54) is hyperbolic for small relative velocity |v1 − v2|, i.e.
there exists C =C (ρ1,ρ2,P2) > 0 such that (2.54) is hyperbolic when |v1 − v2| ≤C .

— When d = 2,3 assume that

1

3
P1 ≤ P2 ≤ 3P1, or equivalently

1

3
P2 ≤ P1 ≤ 3P2. (2.24)

Then (2.54) is hyperbolic whenever |v1 − v2| ≤C . If (2.24) is not satisfied, (2.54) is
only weakly hyperbolic.
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General criterion of hyperbolicity for turbulent two-phase
flows

We finally come back to the general Lagrangian density

L = 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− r

2
Tr(P ),

The three previous results show that the turbulence r TrP/2 can be added in various
ways to the potential energy of a two-phase flow in order to obtain a hyperbolic system
of equations. The next and last result states that the three examples given previously
are the only ones for which the resulting system of equations is hyperbolic.

Theorem 2.4. (General criterion of hyperbolicity for turbulent two-phase flows)
Consider the following general Lagrangian density:

L := 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− 1

2
r Tr(P ), (2.25)

endowed with the constraints

∂tρi +div(ρi vi ) = 0, i = 1,2 (2.26)

and

∂t P + (u ·∇)P + ∂u

∂x
P +P

(
∂u

∂x

)T

= 0, (2.27)

where
(r,u) ∈ {ρ1,ρ2,ρ}× {v1, v2, v}.

Let us consider the system formed by Equations (2.26), (2.27) and the Euler-Lagrange
equations associated to the Lagrangian density (2.25). We denote by M the matrix of this
system. Then, in dimension 1, all the eigenvalues of M are real when v1 = v2, whatever
the choice of convex internal energies ρi Ei (ρ), i = 1,2, if and only if the density r and
the velocity u are compatible, i.e. the following equation is satisfied:

∂t r +div(r u) = 0.

Let us give two remarks to complete the results obtained.

Remark 2.1. When one of the two phases, say the phase 1, is made of solid particles,
one often assumes that the material density of the phase 1, given by

ρ1,0 := ρ1

α1

is a constant. This is the case for instance for a dry granular flow or for a granular
suspension. Note that it is then straightforward to express the volume fractions as
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functions of the density ρ1 :

α1 = ρ1

ρ1,0
, α2 = 1− ρ1

ρ1,0
.

All the systems and hyperbolicity results obtained are still valid under the following
modifications:

— There is no internal energy associated to the phase 1: E1 = 0.
— The pressure is defined by

p = p1 = p2 =
(
ρ2

α2

)2

E ′
2

(
ρ2

α2

)
,

— The chemical potentials Ui are defined by

Ui (ρ1,ρ2) := ∂

∂ρi

[
ρ2E2

(
ρ2

1−ρ1/ρ1,0

)]
, i = 1,2.

Remark 2.2. In dimension 2 or 3, the results obtained state that the hyperbolicity is
valid under additional conditions on the spectrum of the Reynolds tensor (see (2.18)
for instance). These additional conditions are necessary to prevent some eigenval-
ues of the systems to appear with a multiplicity greater than 1. They are called non
resonance conditions. If they are not satisfied, the systems obtained are only weakly
hyperbolic. The solution of weakly hyperbolic systems are known to be less regular than
the ones of hyperbolic systems. In particular, phenomena like creation of vacuum or
high concentration (delta shocks) can occur (see Mitrović et al. 2007 for instance).

Recall that the Reynolds stress tensor is a symmetric, definite positive tensor. As a
consequence, in some cases, these non resonance conditions are always satisfied. For
instance, the condition ρP > θId or ρP < θId of Theorem 2.1 is automatically satisfied
when θ < 0, which is the case whenever a1 is close to a2. Similarly, the non resonance
condition of Theorem 2.2 is automatically satisfied whenever µ< 0.

Outline of the paper
The rest of this document is organised as follows. In Section 2, we give the deriva-

tion of the two-phase flow system with a mixture turbulence, System (2.10), from
Hamilton’s principle. In Section 3, we give a detailed study of the hyperbolicities
of this system and its simplified version, System (2.16), in order to prove Theorem
2.1. In Section 4, we show the hyperbolicity of the two other models presented in
the introduction (Theorems 2.2 and 2.3) and we establish the general hyperbolicity
criterion stated in Theorem 2.4.
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2. Derivation of the model from variational principle

Notations
The space dimension is denoted d and can be equal to 1, 2 or 3. We denote ∂i :=

∂/∂xi the partial derivative of the variable xi , for 1 ≤ i ≤ d . If f : Rd → R is a scalar
function, we denote by ∇ f ∈Rd the gradient of f , i.e. the vector field of components
∂i f , 1 ≤ i ≤ d .

If Z = (Z1, . . . , Zd ) :Rd →Rd is a vector field, the divergence of Z is the scalar function
defined by

div(Z ) := ∂1Z1 +·· ·+∂d Zd .

We also denote by ∂Z /∂x the Jacobian matrix of Z , i.e. the matrix of coefficients
(∂Z /∂x)i , j = ∂Zi /∂x j , for 1 ≤ i , j ≤ d .

If Z = (Zi )1≤i≤d and Z ′ = (Z ′
i )1≤i≤d are two vector fields, we denote Z⊗Z ′ the second

order tensor defined by Z ⊗ Z ′ := Z (Z ′)T , i.e. the matrix of coefficients (Z ⊗ Z ′)i , j =
Zi Z ′

j , for 1 ≤ i , j ≤ d .

If A :Rd → Md (R) is a second order tensor, we define the divergence of A as the line
vector of Rd whose i -th component is given by the divergence of the i -th column of A.

We denote Id the identity matrix. For any positive integer d , we denote S++
d (R) the

set of symmetric definite positive matrices, i.e. the symmetric matrices of size d with
a positive spectrum.

Derivation of System (2.10) from variational principle
We now give the derivation of System (2.10) from Hamilton’s stationary action prin-

ciple. Various arguments that are used in this proof can be found in other works. We
refer to Gavrilyuk and Gouin 2020 for the derivation of Reynolds averaged equations
via variational principle. Detailed computations of Euler-Lagrange equations in differ-
ent reference frames were performed in Gavrilyuk 2020. Finally, we refer to Burtea,
Gavrilyuk, et al. 2024 for an introduction to the application of Hamilton’s principle to
fluid mechanics.

We consider a two-phase flow with a Lagrangian density given by

L = 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− ρ

2
Tr(P ), (2.28)

where ρi (resp. vi ) is the density (resp. velocity) of the phase i , i = 1,2. The two density
are conserved :

∂tρi +div(ρi vi ) = 0, i = 1,2, (2.29)

which implies that the total density ρ := ρ1 +ρ2 is also conserved:

∂tρ+div(ρv) = 0, with ρv := ρ1v1 +ρ2v2.
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α1 and α2 are the volume fractions of the phases 1 and 2 and verify the constraint

α1 +α2 = 1,

hence α2 = 1−α1. The evolution of the Reynolds stress tensor is given by

∂t P + (v ·∇)P + ∂v

∂x
P +P

(
∂v

∂x

)T

= 0. (2.30)

We aim to show that Hamilton’s principle applied to the Lagrangian (2.28) endowed
with the two constraints (2.29) and (2.30) yields Equation (2.10b) as the Euler-Lagrange
equation associated to the velocity vi :

∂t vi + (vi ·∇vi )+curl(v2)∧ (v − vi )+∇(Ui )+ 1

ρ
div(ρP )T = 0, i = 1,2.

2.1. Trajectories and Lagrangian quantities
Let us suppose that the two-phase flow lies in a fixed open set Ω ⊂ Rd , d = 1,2,3.

We denote by X ∈Ω (or Xi , i = 1,2) the initial position of an element of fluid at time
t = 0. X is usually called the Lagrangian coordinate. The trajectory of an element of
the phase 1, flowing at velocity v1, that started at the point X1 at time t = 0, is denoted
by x1(t , X1) ∈Ω. It is defined by

∂t x1(t , X1) = v1(t , x1(t , X1)), with x1(0, X1) = X1.

We will assume that x1(t ) :Ω→Ω is a diffeomorphism for every t ∈ [0,T ], where T > 0
is fixed, and we will denote by x1(t )−1 its inverse. The trajectory x1 enables to define
Lagrangian quantities, i.e. quantities that depend on the Lagrangian coordinates.
Three examples are the Lagrangian velocity v l

1, the Lagrangian density ρl
1 and the

Lagrangian volume fraction αl
1, defined by

v l
1(t , X1) := v1(t , x1(t , X1)), ρl

1(t , X1) := ρ1(t , x1(t , X1)), αl
1(t , X1) :=α1(t , x1(t , X1)).

From the chain rule and the mass conservation, one then computes that

∂tρ
l
1(t , X1) = (∂tρ1 + v1 ·∇ρ1)(t , x1(t , X1)) =−[ρ1div(v1)](t , x1(t , X1)). (2.31)

Using the identity v1 = v l
1 ◦x1(t )−1 and the chain rule once again,

div(v1) =Tr

(
∂v1

∂x

)
= Tr

[(
∂v l

1

∂X1
◦x1(t )−1

)(
∂x1(t )−1

∂x

)]

= Tr

[(
∂v l

1

∂X1

)(
∂x1

∂X1

)−1
]
◦x1(t )−1 = ∂t J1

J1
◦x1(t )−1,
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where we defined

J1 := det

(
∂x1

∂X1

)
the Jacobian of the trajectory x1 and we used the identity

d

d s
[detA(s)] = detA(s)Tr

[
d A

d s
A(s)−1

]
, (2.32)

valid for any C 1 function s 7→ A(s) such that the square matrix A(s) is invertible. Re-
turning to (2.31), we obtain

∂tρ
l
1 =−ρl

1
∂t J1

J1
, i.e. ∂t

(
ρl

1 J1

)
= 0, hence ρl

1 =
ρ1|t=0

J1
(2.33)

(note that x1(0) = I d , hence J1|t=0 = 1). We deduce that the density ρ1 is determined
by its value at time t = 0 and by the trajectory x1.

In a similar way, we define x(t , X ) the solution of

∂t x(t , X ) = v(t , x(t , X )), x(0, X ) = X .

In other words, x(t , X ) is the trajectory of a particle flowing at the mean velocity that
started in position X at time 0. As before, one can define the Lagrangian mean velocity,
the Lagrangian total density and the Lagrangian Reynolds tensor by

v l (t , X ) := v(t , x(t , X )), ρl (t , X ) := ρ(t , x(t , X )) and P l (t , X ) := P (t , x(t , X )).

As in Equation (2.33), we deduce that

ρl = ρl |t=0

J
, with J := det

(
∂x

∂X

)
. (2.34)

Furthermore, the chain rule yields that P l solves an ordinary differential equation,
given by

∂t P l +
(
∂v

∂x
◦x(t )

)
P l +P l

(
∂v

∂x
◦x(t )

)T

= 0.

Hence P is also uniquely determined by the trajectory and the initial value P |t=0.

2.2. Action and variations
Recall that the Lagrangian density of System (2.10) was given in Equation (2.8) by

L = 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− 1

2
ρTr(P ).
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This Lagrangian density can also be written in terms of the variables (ρ1,ρ, v1, v,α1,ρTrP ):

L (ρ1,ρ, v1, v,α1,ρTrP ) := 1

2
ρ|v |2 + ρ1ρ

2(ρ−ρ1)
|v − v1|2 −U (ρ1,ρ−ρ1,α1)− 1

2
ρTrP,

where

U (ρ1,ρ2,α1) := ρ1E1

(
ρ1

α1

)
+ρ2E2

(
ρ2

1−α1

)
,

From now on, we will see L as a function of the variables (ρ1,ρ, v1, v,α1,ρTrP ) only.
One can now define the action associated to this Lagrangian:

A
[

x1, x,αl
1

]
:=

∫ T

0

∫
Ω

L (ρ1,ρ, v1, v,α1,ρTrP )d xd t .

LetΦ= (φ1,φ,φα1 ) ∈Rd×Rd×R be a smooth vector field which is compactly supported
in (0,T )×Ω. For every ϵ ∈R, one can perturb the trajectories and define (x1,ϵ, xϵ,αl

1,ϵ) :=
(x1, x,αl

1)+ϵΦ. To these modified trajectories, one can associate the corresponding
densities, velocities and Reynolds stress tensor that we will denote ρ1,ϵ,ρϵ, v1,ϵ, vϵ,Pϵ.
We define

Aϵ :=A [x1,ϵ, xϵ,α
l
1,ϵ]

the perturbed action. Hamilton’s stationary action principle states that the trajectory
followed by the particles is a stationary point of the action, i.e. that

∂Aϵ

∂ϵ

∣∣∣∣
ϵ=0

= 0,

for every perturbation Φ. In order to simplify notations, we denote, for every quantity
fϵ depending on ϵ, δ f := (∂ϵ fϵ)|ϵ=0. δ f is often called the variation of f . The stationary
action principle is thus equivalent to require that the variation of the action is equal to
zero: δA = 0. We will also define ζ1 :=φ1◦x1(t )−1,ζ :=φ◦x(t )−1 and ζα1 :=φα1◦x1(t )−1.
From the stationary action principle, one obtains the following equality:

0 = δA =
∫ T

0

∫
Ω

[
∂L

∂ρ1
δρ1 + ∂L

∂ρ
δρ+ ∂L

∂v1
δv1 + ∂L

∂v
δv + ∂L

∂α1
δα1 + ∂L

∂(ρTrP )
δ(ρTrP )

]
d xd t .

We thus need to compute the variations of all variables. First, it follows from the
conservation of mass (2.33) and (2.34), as well as the formula (2.32) that

δρ1 =−div(ρ1ζ1) and δρ =−div(ρζ).

As a consequence, we can integrate by parts to obtain that∫ T

0

∫
Ω

∂L

∂ρ1
δρ1 =

∫ T

0

∫
Ω
∇

(
∂L

∂ρ1

)
·ρ1ζ1 and

∫ T

0

∫
Ω

∂L

∂ρ
δρ =

∫ T

0

∫
Ω
∇

(
∂L

∂ρ

)
·ρζ.

We now move on to the variation of the velocities. Since v1 ◦x1(t ) = v l
1 and δv l

1 = ∂tφ1,
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we get that

δv1 = ∂tζ1 + ∂ζ1

∂x
v1 − ∂v1

∂x
ζ1.

Let us define

K1 := 1

ρ1

(
∂L

∂v1

)T

, hence ρ1K T
1 = ∂L

∂v1
.

An integration by part coupled by the conservation of ρ1 yields∫ T

0

∫
Ω

∂L

∂v1
δv1 =

∫ T

0

∫
Ω
ρ1K1 ·

(
∂tζ1 + ∂ζ1

∂x
v1 − ∂v1

∂x
ζ1

)
=−

∫ T

0

∫
Ω
ρ1ζ1 ·

(
∂t K1 + ∂K1

∂x
v1 +

(
∂v1

∂x

)T

K1

)
.

In a similar way, we define

K := 1

ρ

(
∂L

∂ρ

)T

and obtain that ∫ T

0

∫
Ω

∂L

∂v
δv =−

∫ T

0

∫
Ω
ρζ ·

(
∂t K + ∂K

∂x
v +

(
∂v

∂x

)T

K

)
.

Concerning the variations of α1, we compute that

δα1 = ζα1 −
∂α1

∂x
ζ1.

Finally, the equation satisfied by P implies that the variation of P is given by

δTrP =−2Tr

(
∂ζ

∂x
P

)
− ∂(TrP )

∂x
ζ

(see Gavrilyuk and Gouin 2020). In particular, the field ζ is needed to express the
variations of P . This is why we use the trajectory x(t , X ) corresponding to the mean
velocity v and responsible for the presence of lift terms (see Gavrilyuk 2020 and below).
It follows that

δ(ρTrP ) =−2Tr

(
∂ζ

∂x
ρP

)
−div(ρTrPζ).

Hence, by integration by parts,∫ T

0

∫
R

∂L

∂(ρTrP )
δ(ρTrP ) =

∫ T

0

∫
R

Tr

(
∂ζ

∂x
ρP

)
=−

∫ T

0

∫
R

div(ρP )ζ.
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The stationary action principle can thus be written

0 = δA =−
∫ T

0

∫
Ω
ρ1ζ1 ·

(
∂t K1 + ∂K1

∂x
v1 +

(
∂v1

∂x

)T

K1 −∇
(
∂L

∂ρ1

)
+ 1

ρ1

∂α1

∂x

∂L

∂α1

)
−

∫ T

0

∫
Ω
ρζ ·

(
∂t K + ∂K

∂x
v +

(
∂v

∂x

)T

K −∇
(
∂L

∂ρ

)
+ 1

ρ
div(ρP )T

)
+

∫ T

0

∫
Ω

∂L

∂α1
ζα1 .

Since ζ1,ζ and ζα1 are arbitrary and independent of each other, each of the integrands
must vanish and we obtain the following Euler-Lagrange equations:

0 =∂t K1 + ∂K1

∂x
v1 +

(
∂v1

∂x

)T

K1 −∇
(
∂L

∂ρ1

)
+ 1

ρ1

∂α1

∂x

∂L

∂α1
, (2.35)

0 =∂t K + ∂K

∂x
v +

(
∂v

∂x

)T

K −∇
(
∂L

∂ρ

)
+ 1

ρ
div(ρP )T , (2.36)

0 =∂L
∂α1

. (2.37)

2.3. Computation of the equation of the velocities
We can now use the three Euler-Lagrange equations obtained to get the evolution

equations for the velocities vi , i = 1,2. Note that Equation (2.35) can be simplified
with the help of Equation (2.37). We also compute that

K1 =v1 − v2,
∂L

∂ρ1
= 1

2
|v1 − v2|2 − ∂U

∂ρ1
+ ∂U

∂ρ2
,

K =v2,
∂L

∂ρ
= 1

2
|v |2 − 1

2
|v − v2|2 − ∂U

∂ρ2
.

Hence after adding (2.36) to (2.35), we obtain the equation for v1:

∂t v1 + (v1 ·∇)v1 +curl(v2)∧ (v − v1)+∇
(
∂U

∂ρ1

)
+ 1

ρ
div(ρP )T = 0.

We also compute that (2.36) yields the equation for v2:

∂t v2 + (v2 ·∇)v2 +curl(v2)∧ (v − v2)+∇
(
∂U

∂ρ2

)
+ 1

ρ
div(ρP )T = 0.

We still need to express these two equations without the dependence on α1 coming
from (∂U /∂ρi ). In order to do this, we define g (ρ1,ρ2,α1) := ∂U /∂α1 and obtain with
Equation (2.37) that

g (ρ1,ρ2,α1) = ∂U

∂α1
=−∂L

∂α1
= 0.
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We compute that

g (ρ1,ρ2,α1) = ∂U

∂α1
=−

(
ρ1

α1

)2

E ′
1

(
ρ1

α1

)
+

(
ρ2

1−α1

)2

E ′
2

(
ρ2

1−α1

)
= p2 −p1,

hence (2.37) states that the two pressures are equal. Furthermore,

∂g

∂α1
= ∂2U

∂α2
1

= 1

α1

[
2

(
ρ1

α1

)2

E ′
1

(
ρ1

α1

)
+

(
ρ1

α1

)3

E (2)
1

(
ρ1

α1

)]
+ 1

1−α1

[
2

(
ρ2

1−α1

)2

E ′
2

(
ρ2

1−α1

)
+

(
ρ2

1−α1

)3

E (2)
2

(
ρ2

1−α1

)]
=

(
ρ1

α1

)2

U11 +
(

ρ2

1−α1

)2

U22,

where

Ui i := 1

αi

[
2E ′

i

(
ρi

αi

)
+ ρi

αi
E (2)

i

(
ρi

αi

)]
= ∂2U

∂ρ2
i

= 1

αi

d 2ρEi (ρ)

dρ2

∣∣∣∣
ρ=ρi /αi

> 0,

since we assume that ρEi (ρ) is a convex function of ρ for i = 1,2. We are thus allowed
to use the implicit functions theorem to express α1 as a function of ρ1 and ρ2: α1 =
α1(ρ1,ρ2). For i = 1,2, we obtain that

∇
(
∂U

∂ρi

)
= ∂2U

∂ρi∂ρ1
∇ρ1 + ∂2U

∂ρi∂ρ2
∇ρ2 + ∂2U

∂ρi∂α1
∇α1

=
(
∂2U

∂ρi∂ρ1
+ ∂2U

∂ρi∂α1

∂α1

∂ρ1

)
∇ρ1 +

(
∂2U

∂ρi∂ρ2
+ ∂2U

∂ρi∂α1

∂α1

∂ρ2

)
∇ρ2

=∇(Ui ),

where

Ui (ρ1,ρ2) := ∂U

∂ρi
(ρ1,ρ2,α1(ρ1,ρ2))

as claimed in Equation (2.11). We also compute that

∂2U

∂ρ1∂α1
=− 1

α1

[
2
ρ1

α1
E ′

1

(
ρ1

α1

)
+

(
ρ1

α1

)2

E (2)
1

(
ρ1

α1

)]
=−ρ1

α1
U11,

and that
∂2U

∂ρ2∂α1
= ρ2

α2
U22.

Finally, we can use the identity

∂α1

∂ρi
=− ∂g /∂ρi

∂g /∂α1
=− (∂2U /∂α1∂ρi )

(∂2U /∂α2
1)
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to obtain that

ai := ∂Ui

∂ρi
=

U11U22

(
ρ3−i
α3−i

)2

(
ρ1
α1

)2
U11 +

(
ρ2

1−α1

)2
U22

> 0,

and
∂U1

∂ρ2
=

U11U22
ρ1
α1

ρ2
α2(

ρ1
α1

)2
U11 +

(
ρ2

1−α1

)2
U22

= ∂U2

∂ρ1
=: b > 0.

It follows that a1a2 −b2 = 0 as claimed.

Remark 2.3. In the case where one phase is incompressible, there is no dependence on
the variable α1 and the derivation is easier. However, the system obtained still has the
same structure, and the equality a1a2 = b2 is obtained by direct computation.

3. Hyperbolicity of the equations
We give here the proof that System (2.10) is hyperbolic. We first write (2.10) in

matricial form:

∂t Y +
d∑

j=1
A j (Y )∂ j Y = 0.

The vector field Y takes values in R2+2d+d(d+1)/2 =R(d+1)(d+4)/2, and the square matri-
ces A j (Y ) are smooth functions of Y . Let us also define, for every ξ= (ξ1, . . . ,ξd ) ∈Rd ,
the matrix

A(Y ,ξ) :=
d∑

j=1
A j (Y )ξ j .

Then saying that (2.10) is hyperbolic is equivalent to saying that, for every ξ ∈Rd such
that |ξ| = 1, the matrix A(Y ,ξ) is diagonalizable with real eigenvalues.

Since the property of hyperbolicity is invariant under C 1 change of variables, we
choose to set

Y :=


ρ2

v2

ρ

v
P̃

 , with P̃ := P > 0 if d = 1, P̃ :=
P11

P12

P22

 if d = 2, P̃ :=



P11

P12

P13

P22

P23

P33

 if d = 3

(recall that P is a symmetric second order tensor). With this variables, the matrix
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A(Y ,ξ) can be written as a block matrix:

A(Y ,ξ) =


v2 ·ξ ρ2ξ

T 0 0 0
αξ (v ·ξ)Id +ξ(v2 − v)T (β+P/ρ)ξ 0 C (ξ)
0 0 v ·ξ ρξT 0
δξ 0 (γ+P/ρ)ξ (v ·ξ)Id C (ξ)
0 0 0 D(ξ) (v ·ξ)Id

 .

The coefficients α,β,γ and δ are given by

α := a2 −b, β := b, γ := 1

ρ
(ρ1a1 +ρ2b), δ := 1

ρ
[ρ1(b −a1)+ρ2(a2 −b)].

When d = 1, the matrices C (ξ) and D(ξ) are scalars given by C (ξ) := ξ, D(ξ) := 2Pξ.
When d = 2, one has

C (ξ) :=
(
ξ1 ξ2 0
0 ξ1 ξ2

)
and D(ξ) :=

2P11ξ1 +2P12ξ2 0
P21ξ1 +P22ξ2 P11ξ1 +P12ξ2

0 2P12ξ1 +2P22ξ2

 .

When d = 3,

C (ξ) :=
ξ1 ξ2 ξ3 0 0 0

0 ξ1 0 ξ2 ξ3 0
0 0 ξ1 0 ξ2 ξ3

 , D(ξ) :=



2(Pξ)1 0 0
(Pξ)2 (Pξ)1 0
(Pξ)3 0 (Pξ)1

0 2(Pξ)2 0
0 (Pξ)3 (Pξ)2

0 0 2(Pξ)3

 ,

where (Pξ)i denotes the i -th component of the vector Pξ.
In order to prove the hyperbolicity, the first step is to compute the characteristic

polynomial of the matrix A(Y ,ξ). This polynomial is given by the following proposi-
tion.

Proposition 2.1. The characteristic polynomial of the matrix A(Y ,ξ) is given by

χA(Y ,ξ)(λ) =(v ·ξ−λ)(d+2)(d−1)/2+1 [
(v ·ξ−λ)2 −ξT Pξ

]d−2
(2.38)

×{
2ρ2δ(v ·ξ−λ)(v2 − v)T [

P − (ξT Pξ)
]
ξ+ [

(v ·ξ−λ)2 −ξT Pξ
]

q(λ)
}

,

where

q(λ) := [
(v2 ·ξ−λ)2 −αρ2

][
(v ·ξ−λ)2 −3ξT Pξ−ργ]−ρ2δ

(
3ξT Pξ+ρβ)

. (2.39)

Let us also denote A′(Y ,ξ) the matrix of the simpler system (2.16) (without lift terms).
The characteristic polynomial of this system is given by

χA′(Y ,ξ) = (v2 ·ξ−λ)d−1(v ·ξ−λ)d(d−1)/2+1 [
(v ·ξ−λ)2 −ξT Pξ

]d−1
q(λ), (2.40)
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where q(λ) is as in Equation (2.39).

The proof of this Proposition is technical and requires a lot of linear algebra compu-
tations. Hence we defer it to Appendix 5.1.

Now that we have a formula for the characteristic polynomial of the matrices A(Y ,ξ)
and A′(Y ,ξ), we can study the hyperbolicity of Systems (2.10) and (2.16). We will
investigate the cases d = 1, d = 2 and d = 3 separately.

3.1. Case d = 1

When d = 1, the hyperbolicity is given by the following proposition.

Proposition 2.2. There exists a constant C = C (ρ1,ρ2,P ) such that, in dimension 1,
System (2.10) and System (2.16) are hyperbolic when |v1 − v2| <C .

Proof. When d = 1, the second order tensor P is a scalar, as well as the vector ξ. Since
we have that |ξ| = 1, we deduce that ξ=±1 and P −ξT Pξ= 0. Hence the second line of
(2.38) vanishes and the characteristic polynomial is equal to

χA(Y ,ξ) = (v ·ξ−λ)
([

(v2 ·ξ−λ)2 −αρ2
][

(v ·ξ−λ)2 −3ξT Pξ−ργ]−ρ2δ
(
3ξT Pξ+ρβ))

.

Without loss of generality, we can suppose that ξ= 1. We thus obtain that

q(λ) = [
(v2 −λ)2 −αρ2

][
(v −λ)2 −3P −ργ]−ρ2δ

(
3P +ρβ)

. (2.41)

We need to show that q(λ) has four real roots. Since the general study of the roots of
this polynomial is complicated, we first restrict ourselves to the case v1 = v2 = v . If we
define X := (v −λ)2, then

q(λ) = (X −αρ2)(X −3P −ργ)−ρ2δ(3P +ρβ) =: Q(X ).

Hence q(λ) = 0 if and only if Q(X ) = 0. Since Q is of degree 2, we have an explicit
formula for its roots denoted r±:

r± = αρ2 +ργ+3P ±p
∆

2
,

where

∆ :=(
αρ2 +ργ+3P

)2 −4
[
(αρ2(3P +ργ)−ρ2δ(3P +ρβ)

]
(2.42)

=(
αρ2 −ργ−3P

)2 +4ρ2δ(3P +ρβ).

We recall that α,β,γ,δ are given by

α := a2 −b, β := b, γ := 1

ρ
(ρ1a1 +ρ2b), δ := 1

ρ
[ρ1(b −a1)+ρ2(a2 −b)].
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It follows that

αρ2 +ργ= ρ1a1 +ρ2a2 > 0, αρ2 −ργ= ρ2a2 −ρ1a1 −2ρ2b = ρδ−ρβ,

hence

∆=(ρδ−ρβ−3P )2 +4ρ2δ(3P +ρβ)

=(ρδ+ρβ+3P )2 −4ρ1δ(3P +ρβ).

We can combine the two previous lines to obtain

∆= ρ1

ρ
(ρδ−ρβ−3P )2 + ρ2

ρ
(ρδ+ρβ+3P )2 > 0,

since ρβ+3P = ρb +3P > 0. Hence the two roots r± are real and distinct. If we now
return to (2.42), we see that

∆=(
ρ1a1 +ρ2a2 +3P

)2 −4
[
3Pρ2(α−δ)+ρ2ρ(αγ−δβ)

]
=(
ρ1a1 +ρ2a2 +3P

)2 −4

[
3P

ρ1ρ2

ρ
(a2 +a1 −2b)+ρ2ρ1(a1a2 −b2)

]
=(
ρ1a1 +ρ2a2 +3P

)2 −12P
ρ1ρ2

ρ
(a2 +a1 −2b),

where the last equality comes from the relation (2.13). From the expressions of a1, a2

and b obtained in Section 2, we see that

a1 +a2 −2b = γ
(
ρ1

α1
− ρ2

α2

)2

, (2.43)

where γ is a positive constant. It follows that

r± =
ρ1a1 +ρ2a2 +3P ±

√(
ρ1a1 +ρ2a2 +3P

)2 −12P ρ1ρ2
ρ
γ

(
ρ1
α1

− ρ2
α2

)2

2
.

We see that r+ > 0 and r− ≥ 0, with r− = 0 if and only if ρ1/α1 = ρ2/α2, i.e. if and only if
the two material densities are equal. Since by hypothesis the two material densities
are different, we also have r− > 0. Hence χA(Y ,ξ) has five distinct roots, given by

λ1 = v, λ2± = v ±p
r+, λ3± = v ±p

r−.

By continuity, there exists C =C (ρ1,ρ2,P ) such that χA(Y ,ξ) has five distinct roots for
every v1, v2 such that |v1−v2| ≤C (ρ1,ρ2,P ). Hence the matrix A(Y ,ξ) is diagonalizable
with real eigenvalues and System (2.10) is strictly hyperbolic. The proof for the system
without lift terms is the same since these terms vanish when d = 1.
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3.2. Case d = 2

We now move on to the case d = 2. Recall that we aim to prove the following result:

Proposition 2.3. Let θ be defined as in Equation (2.17) of Theorem (2.1):

θ := ρ1ρ2
(p

a1 −p
a2

)2 − 1

2

(
ρ1

p
a1 +ρ2

p
a2

)2 .

If ρP < θId or ρP > θId , there exists C =C (ρ1,ρ2,P ) > 0 such that Systems (2.10) and
(2.16) are hyperbolic, whenever |v1 − v2| <C .

Proof. In dimension 2, the characteristic polynomial of A(Y ,ξ) is given by

χA(Y ,ξ) = (v ·ξ−λ)3 ([
(v ·ξ−λ)2 −ξT Pξ

]
q(λ)+2ρ2δ(v ·ξ−λ)(v2 − v)T [

P − (ξT Pξ)
]
ξ
)

,

where q(λ) was defined in Equation (2.39). Let us first look at the polynomial

q̃(λ) := [
(v ·ξ−λ)2 −ξT Pξ

]
q(λ)+2ρ2δ(v ·ξ−λ)(v2 − v)T [

P − (ξT Pξ)
]
ξ,

such that
χA(Y ,ξ) = (v ·ξ−λ)3q̃(λ).

When v1 = v2 = v , q̃ reduces to

q̃(λ) = [
(v ·ξ−λ)2 −ξT Pξ

]
q(λ).

By mimicking the case d = 1, we deduce that q̃ has six roots, given by

λ1± = v ·ξ±
√
ξT Pξ, λ2± = v ·ξ±p

r+, λ3± = v ·ξ±p
r−,

with

r± =
ρ1a1 +ρ2a2 +3ξT Pξ±

√(
ρ1a1 +ρ2a2 +3ξT Pξ

)2 −12ξT Pξρ1ρ2
ρ γ

(
ρ1
α1

− ρ2
α2

)2

2
.

(2.44)
Let us show that the six roots are all distinct. From the case d = 1, we see that λ2±
and λ3± are always distinct. We also see with Equation (2.44) that r+ > ξT Pξ, hence
λ1± and λ2± are also always different. If finally we suppose that λ1± and λ3± are not
distinct, we obtain from Equations (2.44) and (2.43) the following equality:

ρξT Pξ= ρ1ρ2(a1 +a2 −2b)− 1

2
(ρ2

1a1 +ρ2
2a2 +2ρ1ρ2b),

which yields after replacing b by
p

a1a2,

ρξT Pξ= ρ1ρ2(
p

a1 −p
a2)2 − 1

2
(ρ1

p
a1 +ρ2

p
a2)2 = θ,
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where θ was defined in (2.17). Since we supposed that ρP > θId or that ρP < θId , and
ξT ξ= 1, we deduce that ρξT Pξ ̸= θ and the six roots are real and distinct.

By continuity, there exists C =C (ρ1,ρ2,P ) such that q̃(λ) has six disctinct real roots
for every v1, v2 such that |v1 − v2| ≤ C (ρ1,ρ2,P ). Up to reducing C , we can suppose
that all six eigenvalues are different from v ·ξ. Since the six eigenvalues are distinct,
there exist six corresponding eigenvectors. We are thus left to find three independent
eigenvectors for the eigenvalue λ= v ·ξ. The matrix A(Y ,ξ)− (v ·ξ)Id is given by

A(Y ,ξ)− (v ·ξ)Id =


v2 ·ξ− v ·ξ ρ2ξ

T 0 0 0
αξ ξ(v2 − v)T (β+P/ρ)ξ 0 C (ξ)
0 0 0 ρξT 0
δξ 0 (γ+P/ρ)ξ 0 C (ξ)
0 0 0 D(ξ) 0


Let X be an eigenvector of A(Y ,ξ) for the eigenvalue (v · ξ). We write X as a block
vector compatible with A(Y ,ξ) and solve the linear system [A(Y ,ξ)− (v ·ξ)Id ] X = 0.
After some computations, we obtain the following three independent eigenvectors:

X1 =


0
0
0
0

u1

 , X2 =


0
ξ⊥

(v2−v)·ξ⊥
γ−β

0
u2

 , X3 =


ρ2

(v ·ξ− v2 ·ξ)ξ
ρ2δ−ρ2α+[(v2−v)·ξ]2

β−γ
0

u3

 , (2.45)

where ξ⊥,u1,u2,u3 ∈R2 are four vectors such that

ξ⊥ ̸= 0, ξ ·ξ⊥ = 0, u1 ̸= 0, C (ξ)u1 = 0, C (ξ)u2 =− (v2 − v) ·ξ⊥
γ−β

(
γ+ P

ρ

)
ξ,

and

C (ξ)u3 =
[
−ρ2δ− ρ2δ−ρ2α+ [(v2 − v) ·ξ]2

β−γ
(
γ+ P

ρ

)]
ξ.

In order to see that the three vectors are well defined, we first note that γ−β =
ρ1(b −a1)/ρ ̸= 0, since otherwise b = a1 and from a1a2 = b2 one obtains a1 = a2 = b,
which is incompatible with the assumption that a1 + a2 −2b > 0. Furthermore, we
see that the matrix C (ξ) has always a rank 2 submatrix when ξ ̸= 0, which implies that
C (ξ) is onto and the dimension of its kernel is one. Thus the vectors u1,u2,u3 are well
defined. Hence the matrix A(Y ,ξ) is diagonalizable and System (2.10) is only weakly
hyperbolic.
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Case of the system without lift terms

Finally, let us investigate the case where the lift terms vanish. In this case, the
characteristic polynomial is given by

χA′(Y ,ξ)(λ) = (v2 ·ξ−λ)(v ·ξ−λ)2[(v ·ξ−λ)2 −ξT Pξ]q(λ).

When v1 = v2 = v , it follows from the case d = 1 that q(λ) has four distinct real roots,
given by

λ1± = v ·ξ±p
r+, λ2± = v ·ξ±p

r−.

Hence there exists a constant C =C (ρ1,ρ2,P ) such that q has four distinct real roots,
for any |v1 − v2| < C (ρ1,ρ2,P ). This implies that χA′(Y ,ξ) also only has real roots for
these values of v1, v2. As in the previous case, up to reducing C , we can assume that the
roots of q are distinct from v ·ξ, from v2·ξ and from v ·ξ±

√
ξT Pξ by using the condition

ρP < θId or ρP > θId . It follows that most of the eigenvalues have a multiplicity one,
except for v ·ξ, which has multiplicity two (or three if v2 ·ξ= v ·ξ). Thus we need to
find two eigenvectors for this eigenvalue v ·ξ, and three when v2 ·ξ= v ·ξ. We compute
that

A′(Y ,ξ)− (v ·ξ)Id =


v2 ·ξ− v ·ξ ρ2ξ

T 0 0 0
αξ (v2 ·ξ− v ·ξ)Id (β+P/ρ)ξ 0 C (ξ)
0 0 0 ρξT 0
δξ 0 (γ+P/ρ)ξ 0 C (ξ)
0 0 0 D(ξ) 0


We find two independent eigenvectors, given by

X1 =


0
0
0
0

u1

 and X3 =


ρ2

(v2 ·ξ− v ·ξ)ξ
ρ2(α−δ)+(v2·ξ−v ·ξ)2

γ−β
0

u3

 , (2.46)

where u1 ̸= 0, C (ξ)u1 = 0 and

C (ξ)u3 =
[
−ρ2δ− ρ2δ−ρ2α+ [(v2 − v) ·ξ]2

β−γ
(
γ+ P

ρ

)]
ξ.

Note that, when v2 ·ξ= v ·ξ, a third eigenvector for the eigenvalue v ·ξ is

X2 =


0
ξ⊥

0
0
0

 with ξ⊥ ̸= 0 and ξT ξ⊥ = 0. (2.47)
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Finally, we can show that the condition ρP < θId or ρP > θId is necessary for the
hyperbolicity of System (2.16). Indeed, if this condition does not hold, one can find a
vector ξ such that |ξ| = 1 and that q(v ·ξ±

√
ξT Pξ) = 0, whenever v1 and v2 are close

enough. In this case, v ·ξ±
√
ξT Pξ is a root of χA′(Y ,ξ) of multiplicity two. However,

computations show that the kernel of the matrix A′(Y ,ξ)− (v ·ξ±
√
ξT Pξ)Id is always

of dimension 1. Hence the matrix A′(Y ,ξ) is not diagonalisable in this case and System
(2.16) is not hyperbolic.

3.3. Case d = 3

In dimension 3, we need to prove the following proposition:

Proposition 2.4. Let θ be defined as in Equation (2.17) of Theorem (2.1):

θ := ρ1ρ2
(p

a1 −p
a2

)2 − 1

2

(
ρ1

p
a1 +ρ2

p
a2

)2 .

If ρP < θId or ρP > θId , there exists C = C (ρ1,ρ2,P ) > 0 such that System (2.16) is
hyperbolic, whenever |v1 −v2| <C . Under these assumptions, System (2.10) is weakly
hyperbolic.

Proof. We first prove the result concerning System (2.10). When d = 3, the characteris-
tic polynomial of the system is given by

χA(Y ,ξ) = (v ·ξ−λ)6 [
(v ·ξ−λ)2 −ξT Pξ

]
q̃(λ),

with

q̃(λ) = [
(v ·ξ−λ)2 −ξT Pξ

]
q(λ)+2ρ2δ(v ·ξ−λ)(v2 − v)T [

P − (ξT Pξ)
]
ξ

and q(λ) was defined in Equation (2.39). When ξ is such that

(v2 − v)T [
P − (ξT Pξ)

]
ξ= 0, (2.48)

the characteristic polynomial can be written

χA(Y ,ξ) = (v ·ξ−λ)6 [
(v ·ξ−λ)2 −ξT Pξ

]2
q(λ).

Hence the algebraic multiplicity of v ·ξ±
√
ξT Pξ is equal to two. However, computa-

tions show that the geometric multiplicity of this eigenvalue is equal to two if and only
if the vectors v2 − v and ξ are proportional, and is equal to one when it is not the case.
Since Equation (2.48) can be satisfied even when ξ and v2−v are not proportional (for
instance when ξ is an eigenvector of P ), the matrix A(Y ,ξ) is not diagonalizable for
every ξ and System (2.10) is not hyperbolic in dimension 3.
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Case of the system without lift terms

Let us now consider System (2.16). When d = 3,

χA′(Y ,ξ) = (v2 ·ξ−λ)2(v ·ξ−λ)4 [
(v ·ξ−λ)2 −ξT Pξ

]2
q(λ).

From the case d = 1, there exists C =C (ρ1,ρ2,P ) > 0 such that q has four distinct real
roots whenever |v1 − v2| <C . Up to reducing C , we can suppose that the four roots of
q are distinct from v ·ξ, from v2 ·ξ and from v ·ξ±

√
ξT Pξ.

We are thus left to find two independent eigenvectors for the eigenvalue v2 ·ξ, four
for the eigenvalue v ·ξ and two for the eigenvalues v ·ξ±

√
ξT Pξ. First, we see that

the matrix C (ξ) is of rank 3 since it always has an invertible 3×3 submatrix. Thus
the dimension of its kernel is also 3. Hence the formulas for the vectors X1 and X3,
that were defined in Equation (2.46) for the case d = 2 already provide 4 independent
eigenvectors. Similarly, the subspace which is orthogonal to ξ is of dimension 2
when d = 3, hence the Equation (2.47) defines two independent eigenvectors for the
eigenvalue v2 ·ξ.

Finally, the matrix A′(Y ,ξ)− (v ·ξ∓
√
ξT Pξ)Id is equal to

v2 ·ξ− v ·ξ±
√
ξT Pξ ρ2ξ

T 0 0 0

αξ (v2 ·ξ− v ·ξ±
√
ξT Pξ)Id (β+P/ρ)ξ 0 C (ξ)

0 0 ±
√
ξT Pξ ρξT 0

δξ 0 (γ+P/ρ)ξ ±
√
ξT PξId C (ξ)

0 0 0 D(ξ) ±
√
ξT PξId

 .

We obtain two eigenvectors of the form

X4 =



0

±
√
ξT Pξξ⊥

0

(v2 ·ξ− v ·ξ±
√
ξT Pξ)ξ⊥

∓ v2·ξ−v ·ξ±
p
ξT Pξp

ξT Pξ
D(ξ)ξ⊥

 , where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

Hence A′(Y ,ξ) is diagonalizable and System (2.16) is hyperbolic.

4. Other models
This section is devoted to the proofs of Theorems 2.2, 2.3 and 2.4. The proofs of

these theorems is very similar to the proof of Theorem 2.1. As a consequence, the
proofs are given without detailed computations.
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4.1. Case where the turbulence is carried by one phase
In this part, we give the proof of Theorem 2.2. We thus consider a two-phase flow

for which one of the two phases, say the phase 2, is turbulent. In other words, instead
of assuming that the turbulence is created by the mixture of the two phases, as it was
the case in System (2.10), we suppose that it is intrinsic to the phase 2. We choose for
this two-phase flow the Lagrangian defined in Equation (2.19):

L := 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− 1

2
ρ2Tr(P2). (2.49)

We use the superscript 2 for the tensor P2 to insist on the fact that it is carried by the
phase two. as a consequence, we assume that the evolution of P2 is given by Equation
(2.20):

∂t P2 + (v2 ·∇)P2 + ∂v2

∂x
P2 +P2

(
∂v2

∂x

)T

= 0. (2.50)

We impose again the conservation of the two densities:

∂tρi +div(ρi vi ) = 0, i = 1,2. (2.51)

We also define, for i = 1;2, the trajectory followed by the particles of the phase i ,
denoted xi , such that

∂t xi (t , X ) = vi (t , xi (t , X )), xi (0, X ) = X .

The action associated to the Lagrangian (2.49) is given by

A
[

x1, x2,αl
1

]
:=

∫ T

0

∫
Ω

L .

One can apply the stationary action principle under the constraints given by (2.51)
and (2.50) to obtain the following system:

∂tρi +div(ρi vi ) = 0, i = 1,2, (2.52a)

∂t v1 + (v1 ·∇v1)+∇(U1) = 0, (2.52b)

∂t v2 + (v2 ·∇v2)+∇(U2)+ 1

ρ2
div(ρ2P2)T = 0, (2.52c)

∂t P2 + (v2 ·∇)P2 + ∂v2

∂x
P2 +P2

(
∂v2

∂x

)T

= 0. (2.52d)

The potentials U1 and U2 are defined as in Section 1. The conservation of total mo-
mentum still holds:

∂t (ρ1v1 +ρ2v2)+div
(
ρ1v1 ⊗ v1 +ρ2v2 ⊗ v2 +pId +ρ2P2

)T = 0,
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as well as the conservation of energy:

∂t (e1 +e2)+div
(
e1v1 +e2v2 +p(α1v1 +α2v2)+ρ2P2v2

)= 0,

where

e1 := 1

2
ρ1|v1|2 +ρ1E1

(
ρ1

α1

)
, e2 := 1

2
ρ2|v2|2 +ρ2E2

(
ρ2

α2

)
+ 1

2
ρ2Tr(P2)

and

p :=
(
ρ1

α1

)2

E ′
1

(
ρ1

α1

)
=

(
ρ2

α2

)2

E ′
2

(
ρ2

α2

)
.

We now recall the main result about System (2.52):

Proposition 2.5. The hyperbolicity of System (2.52) can be characterized as follows:
— When d = 1, System (2.52) is hyperbolic for small relative velocity |v1 − v2|, i.e.

there exists C =C (ρ1,ρ2,P2) > 0 such that (2.52) is hyperbolic when |v1 − v2| ≤C .
— When d = 2,3 let

µ := ρ1a1 − 1

2
ρ2a2

and assume that either P2 >µId or P2 <µId . Then (2.52) is hyperbolic whenever
|v1 − v2| ≤C .

Proof. We use here the notations of Section 3. The matrix of System (2.52) is given by

B(Y ,ξ) :=


v1 ·ξ ρ1ξ

T 0 0 0
a1ξ (v1 ·ξ)Id bξ 0 0

0 0 v2 ·ξ ρ2ξ
T 0

bξ 0 (a2 + P2
ρ2

)ξ (v2 ·ξ)Id C (ξ)

0 0 0 D(ξ) (v2 ·ξ)Id


We compute that the characteristic polynomial χB(Y ,ξ) of this matrix is given by

χB(Y ,ξ)(λ) = (v1 ·ξ−λ)d−1(v2 ·ξ−λ)d(d−1)/2+1 [
(v2 ·ξ−λ)2 −ξT P2ξ

]d−2
q0(λ),

where

q0(λ) := [
(v1 ·ξ−λ)2 −ρ1a1

][
(v2 ·ξ−λ)2 −ρ2a2 −3ξT P2ξ

]−ρ1ρ2b2.

Let us show that q0 has four distinct real roots when v1 and v2 are close. When
v1 = v2 = v , let us denote X := (v ·ξ−λ)2. Then

q0(λ) = X 2 − (
ρ1a1 +ρ2a2 +3ξT P2ξ

)
X +3ξT P2ξρ1a1 =: Q0(X ).

Hence q0(λ) = 0 if and only if Q0(X ) = 0. The roots of Q0 are given by

r± = ρ1a1 +ρ2a2 +3ξT P2ξ±
p
∆

2
,

118



2. Modèles hyperboliques d’écoulements diphasiques turbulents – 4. Other models

where

∆ :=(ρ1a1 +ρ2a2 +3ξT P2ξ)2 −12ξT P2ξρ1a1

=(ρ1a1 −ρ2a2 −3ξT P2ξ)2 +4ρ1ρ2a1a2 > 0.

Hence r± > 0 and q0 has four distinct real roots, given by

λ1± := v ·ξ±p
r+, λ2± := v ·ξ±p

r−.

By continuity, there exists C =C (ρ1,ρ2,P2) > 0 such that q0 has four distinct real roots,
for any |v1 − v2| < C . For these values of |v1 − v2|, χB(Y ,ξ) has only real roots. Since
r± > 0, the roots of q0 are distinct from v ·ξ. The assumption P2 < µId or P2 > µId

ensures that the roots of q0 are also distinct from v ·ξ±
√
ξT P2ξ. Thus, up to reducing

C , we can always assume that the roots of q0 are roots of χB(Y ,ξ) of multiplicity one.
It follows that v1 ·ξ is a root of multiplicity d −1, v2 ·ξ is of multiplicity d(d −1)/2+1
and v2 ·ξ±

√
ξT P2ξ is of multiplicity d −1.

Let us show that B(Y ,ξ) is diagonalizable. We see that we can find d −1 eigenvectors
for the eigenvalue v1 ·ξ which are of the form

X1 :=


0
ξ⊥

0
0
0

 , where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

For the eigenvalue v2 ·ξ, we can find d(d −1)/2+1 eigenvectors of the form

X2 :=


0
0
0
0

u1

 and X3 :=


ρ1

(v2 ·ξ− v1 ·ξ)ξ
(v1·ξ−v2·ξ)2−ρ1a1

b
0

u2

 ,

where u1 ̸= 0, C (ξ)u1 = 0, and

C (ξ)u2 =
[
ρ1a1 − (v1 ·ξ− v2 ·ξ)2

b

(
a2 + P2

ρ2

)
−ρ1b

]
ξ.

Note that C (ξ) is a matrix of size d(d +1)/2×d and of rank d , hence the dimension of
its kernel is d(d −1)/2.

Finally, we can find d − 1 eigenvectors corresponding to the eigenvalue v2 · ξ±

119



2. Modèles hyperboliques d’écoulements diphasiques turbulents – 4. Other models

√
ξT P2ξ, given by

X4 :=


0
0
0
ξ⊥

± 1p
ξT P2ξ

D(ξ)ξ⊥

 , where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

Hence B(Y ,ξ) is diagonalizable and System (2.52) is hyperbolic.

4.2. Case where each phase is turbulent
We now give the proof of Theorem 2.2. We thus consider a two-phase flow in

which each phase is endowed with a Reynolds stress tensor denoted Pi , i = 1,2. The
Lagrangian density is the following:

L := 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− 1

2
ρ1Tr(P1)− 1

2
ρ2Tr(P2). (2.53)

The densities are still conserved:

∂tρi +div(ρi vi ) = 0, i = 1,2.

The evolution equations for P1,P2 are given by

∂t Pi + (vi ·∇)Pi + ∂vi

∂x
Pi +Pi

(
∂vi

∂x

)T

= 0, i = 1,2.

The action associated to the Lagrangian density (2.22) is

A
[

x1, x2,αl
1

]
:=

∫ T

0

∫
Ω

L ,

where the trajectories xi are defined by

∂t xi (t , X ) = vi (t , xi (t , X )), xi (0, X ) = X .

The stationary action principle then gives the following system of equations:

∂tρi +div(ρi vi ) = 0, i = 1,2, (2.54a)

∂t vi + (vi ·∇vi )+∇(Ui )+ 1

ρi
div(ρi Pi )T = 0, i = 1,2 (2.54b)

∂t Pi + (vi ·∇)Pi + ∂vi

∂x
Pi +Pi

(
∂vi

∂x

)T

= 0 i = 1,2. (2.54c)
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The potentials U1 and U2 are defined as in Section 1. The conservation of total mo-
mentum still holds:

∂t (ρ1v1 +ρ2v2)+div
(
ρ1v1 ⊗ v1 +ρ2v2 ⊗ v2 +pId +ρ1P1 +ρ2P2

)T = 0,

as well as the conservation of energy:

∂t (e1 +e2)+div
(
e1v1 +e2v2 +p(α1v1 +α2v2)+ρ1P1v1 +ρ2P2v2

)= 0,

where

e1 := 1

2
ρ1|v1|2 +ρ1E1

(
ρ1

α1

)
+ 1

2
ρ1Tr(P1), e2 := 1

2
ρ2|v2|2 +ρ2E2

(
ρ2

α2

)
+ 1

2
ρ2Tr(P2)

and

p :=
(
ρ1

α1

)2

E ′
1

(
ρ1

α1

)
=

(
ρ2

α2

)2

E ′
2

(
ρ2

α2

)
.

We now state the main result about System (2.54):

Proposition 2.6. The hyperbolicity of System (2.54) can be characterized as follows:
— When d = 1, System (2.54) is hyperbolic for small relative velocity |v1 − v2|, i.e.

there exists C =C (ρ1,ρ2,P2) > 0 such that (2.52) is hyperbolic when |v1 − v2| ≤C .
— When d = 2,3 assume that

1

3
P1 ≤ P2 ≤ 3P1. (2.55)

Then (2.52) is hyperbolic whenever |v1 − v2| ≤C .

Proof. We use here the notations of Section 3. The matrix of System (2.52) is given by

C (Y ,ξ) :=



v1 ·ξ ρ1ξ
T 0 0 0 0

(a1 + P1
ρ1

)ξ (v1 ·ξ)Id C (ξ) bξ 0 0

0 D1(ξ) (v1 ·ξ)Id 0 0 0
0 0 0 v2 ·ξ ρ2ξ

T 0
bξ 0 0 (a2 + P2

ρ2
)ξ (v2 ·ξ)Id C (ξ)

0 0 0 0 D2(ξ) (v2 ·ξ)Id


,

where

Y :=



ρ1

v1

P̃1

ρ2

v2

P̃2


and Di (ξ) is defined as in Section 3, but with Pi instead of P (i = 1,2). We compute
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that the characteristic polynomial χC (Y ,ξ) of this matrix is given by

χC (Y ,ξ)(λ) =(v1 ·ξ−λ)d(d−1)/2+1 [
(v1 ·ξ−λ)2 −ξT P1ξ

]d−2

× (v2 ·ξ−λ)d(d−1)/2+1 [
(v2 ·ξ−λ)2 −ξT P2ξ

]d−2
q1(λ),

where

q1(λ) := [
(v1 ·ξ−λ)2 −ρ1a1 −3ξT P1ξ

][
(v2 ·ξ−λ)2 −ρ2a2 −3ξT P2ξ

]−ρ1ρ2b2.

Let us show that q1 has four distinct real roots when v1 and v2 are close. When
v1 = v2 = v , let us denote X := (v ·ξ−λ)2. Then

q1(λ) =X 2 − (
ρ1a1 +ρ2a2 +3ξT P1ξ+3ξT P2ξ

)
X

+ (ρ1a1 +3ξT P1ξ)(ρ2a2 +3ξT P2ξ)−ρ1ρ2a1a2

= : Q1(X ).

Hence q1(λ) = 0 if and only if Q1(X ) = 0. The roots of Q1 are given by

r± = ρ1a1 +ρ2a2 +3ξT P1ξ+3ξT P2ξ±
p
∆

2
,

where

∆ :=(ρ1a1 +ρ2a2 +3ξT P1ξ+3ξT P2ξ)2 −4
[
(ρ1a1 +3ξT P1ξ)(ρ2a2 +3ξT P2ξ)−ρ1ρ2a1a2

]
=(ρ1a1 +3ξT P1ξ−ρ2a2 −3ξT P2ξ)2 +4ρ1ρ2a1a2 > 0.

Hence r± > 0 and q1 has four distinct real roots, given by

λ1± := v ·ξ±p
r+, λ2± := v ·ξ±p

r−.

By continuity, there exists C =C (ρ1,ρ2,P2) > 0 such that q1 has four distinct real roots,
for any |v1 − v2| < C . For these values of |v1 − v2|, χC (Y ,ξ) has only real roots. Since
r± > 0, the roots of q1 are distinct from v ·ξ. The assumption (2.24) ensures that the
roots of q1 are also distinct from v ·ξ±

√
ξT Piξ for i = 1,2. Thus, up to reducing C , we

can always assume that the roots of q1 are roots of χC (Y ,ξ) of multiplicity one. It follows

that vi ·ξ is a root of multiplicity d(d −1)/2+1 and vi ·ξ±
√
ξT Piξ is of multiplicity

d −1, for i = 1,2.
Let us show that C (Y ,ξ) is diagonalizable. We see that we can find d(d −1)/2+1
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eigenvectors for the eigenvalue v1 ·ξ which are of the form

X1 :=



0
0

u1

0
0
0

 and X2 :=



ρ2a2 +3ξT P2ξ− (v2 ·ξ− v1 ·ξ)2

0
u2

−ρ2b
v2·ξ−v1·ξ

ξT P2ξ−(v2·ξ−v1·ξ)2 [3ξT P2ξ− (v2 ·ξ− v1 ·ξ)2 −2P2]bξ
1

(v2·ξ−v1·ξ)2−ξT P2ξ
D2(ξ)[3ξT P2ξ− (v2 ·ξ− v1 ·ξ)2 −2P2]bξ


where u1 ̸= 0, C (ξ)u1 = 0, and

C (ξ)u2 =
[
ρ2b2 − [

ρ2a2 +3ξT P2ξ− (v2 ·ξ− v1 ·ξ)2](
a1 + P1

ρ1

)]
ξ.

Note that C (ξ) is a matrix of size d(d +1)/2×d and of rank d , hence it is onto and the
dimension of its kernel is d(d −1)/2.

We can also find d −1 eigenvectors corresponding to the eigenvalue v1 ·ξ±
√
ξT P1ξ,

given by

X3 :=



0
ξ⊥

± 1p
ξT Pξ

D(ξ)ξ⊥

0
0
0


, where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

Since the system is invariant under permutation of indices 1 ↔ 2, one can find similar
eigenvectors for the eigenvalues v2 ·ξ and v2 ·ξ±

√
ξT P2ξ. Hence C (Y ,ξ) is diagonaliz-

able and System (2.54) is hyperbolic.

4.3. Other systems
In the previous sections, we showed that the presence of turbulence in a two-phase

flow, modeled by a Reynolds tensor, enables to obtain a hyperbolic system coming
from a variational principle. We showed that the turbulence can be added in various
ways and gave three different examples. Theorem 2.4 states that the three examples
given previously are the only ones for which the system of equations obtained is
hyperbolic. Recall the statement of Theorem 2.4:

Theorem 2.5. Consider the following general Lagrangian density:

L := 1

2
ρ1|v1|2 + 1

2
ρ2|v2|2 −ρ1E1

(
ρ1

α1

)
−ρ2E2

(
ρ2

α2

)
− 1

2
r Tr(P ), (2.56)

123



2. Modèles hyperboliques d’écoulements diphasiques turbulents – 4. Other models

endowed with the constraints

∂tρi +div(ρi vi ) = 0, i = 1,2 (2.57)

and

∂t P + (u ·∇)P + ∂u

∂x
P +P

(
∂u

∂x

)T

= 0, (2.58)

where
(r,u) ∈ {ρ1,ρ2,ρ}× {v1, v2, v}.

Let us consider the system formed by Equations (2.57), (2.58) and the Euler-Lagrange
equations associated to the Lagrangian density (2.56). We denote by M the matrix
of this system. Then, in dimension 1, all the eigenvalues of M are real when v1 = v2,
whatever the choice of convex internal energies ρEi (ρ), i = 1,2, if and only if the density
r and the velocity u are compatible, i.e. the following equation is satisfied:

∂t r +div(r u) = 0.

Proof. We treat each possible value of (r,u) ∈ {ρ1,ρ2,ρ}× {v1, v2, v} separately. The
case (r,u) = (ρ, v) was treated in the study of System (2.10). The case (r,u) = (ρ2, v2)
was treated in the study of System (2.52). By symmetry, we are left to study the three
following cases:

— (r,u) = (ρ1, v2)
— (r,u) = (ρ, v2)
— (r,u) = (ρ1, v)

4.3.1. Case (r,u) = (ρ1, v2)

We obtain the following system:

∂tρi +div(ρi vi ) = 0, i = 1,2,

∂t v1 + (v1 ·∇)v1 +∇(U1 + 1

2
TrP ) = 0,

∂t v2 + (v2 ·∇)v2 +∇(U2)+ 1

ρ2
div(ρ1P )T − ρ1

2ρ2
∇(TrP ) = 0,

∂t P + (v2 ·∇)P + ∂v2

∂x
P +P

(
∂v2

∂x

)T

= 0.

In 1d , the characteristic polynomial is given by

χ(λ) =(v2 −λ)
[
(v1 −λ)2(v2 −λ)2 −ρ1a1(v2 −λ)2

−ρ2

(
a2 +ρ1

P

ρ2
2

)
(v1 −λ)2 +ρ1ρ2

[
a1

(
a2 +ρ1

P

ρ2
2

)
−

(
b + P

ρ2

)2
]]

.
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Let us look at the case v1 = v2 = v . If we denote X := (v −λ)2, we get that

χ(λ)

v −λ = X 2 −
(
ρ1a1 +ρ2a2 + ρ1P

ρ2

)
X +ρ1ρ2

[
a1

(
a2 + ρ1P

ρ2
2

)
−

(
b + P

ρ2

)2
]
=: Q(X ).

The discriminant of Q(X ) is

∆ :=
(
ρ1a1 +ρ2a2 + ρ1P

ρ2

)2

−4ρ1ρ2

[
a1

(
a2 + ρ1P

ρ2
2

)
−

(
b + P

ρ2

)2
]

=
(
ρ1a1 −ρ2a2 − ρ1P

ρ2

)2

+4ρ1ρ2

(
b + P

ρ2

)2

> 0.

Hence Q has two real roots. This gives four roots for χ. In order that the roots of χ be
real, the roots of Q have to be positive. This gives the condition

0 < a1

(
a2 + ρ1P

ρ2
2

)
−

(
b + P

ρ2

)2

= P

ρ2
2

(
ρ1a1 −2ρ2b −P

)
.

Hence there are some admissible values of a1,b,P such that χ has complex roots.

4.3.2. Case (r,u) = (ρ, v2)

We obtain the following system:

∂tρi +div(ρi vi ) = 0, i = 1,2,

∂t v1 + (v1 ·∇)v1 +∇(U1 + 1

2
TrP ) = 0,

∂t v2 + (v2 ·∇)v2 +∇(U2)+ 1

ρ2
div(ρP )T − ρ1

2ρ2
∇(TrP ) = 0,

∂t P + (v2 ·∇)P + ∂v2

∂x
P +P

(
∂v2

∂x

)T

= 0.

In 1d , the characteristic polynomial is given by

χ(λ) =(v2 −λ)
[
(v1 −λ)2(v2 −λ)2 −ρ1a1(v2 −λ)2

−ρ2

[
a2 +

(
ρ1 +3ρ2

) P

ρ2
2

]
(v1 −λ)2 +ρ1ρ2

[
a1

(
a2 + (ρ1 +3ρ2)

P

ρ2
2

)
−

(
b + P

ρ2

)2
]]

.
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Let us look at the case v1 = v2 = v . If we denote X := (v −λ)2, we get that

χ(λ)

v −λ =X 2 −
(
ρ1a1 +ρ2a2 + (ρ1 +3ρ2)

P

ρ2
2

)
X

+ρ1ρ2

[
a1

(
a2 + (ρ1 +3ρ2)

P

ρ2
2

)
−

(
b + P

ρ2

)2
]

= : Q(X ).

The discriminant of Q(X ) is

∆ :=
(
ρ1a1 +ρ2a2 + (ρ1 +3ρ2)

P

ρ2
2

)2

−4ρ1ρ2

[
a1

(
a2 + (ρ1 +3ρ2)

P

ρ2
2

)
−

(
b + P

ρ2

)2
]

=
(
ρ1a1 −ρ2a2 − (ρ1 +3ρ2)

P

ρ2
2

)2

+4ρ1ρ2

(
b + P

ρ2

)2

> 0.

Hence Q has two real roots. This gives four roots for χ. In order that the roots of χ be
real, the roots of Q have to be positive. This gives the condition

0 < a1

(
a2 + (ρ1 +3ρ2)

P

ρ2
2

)
−

(
b + P

ρ2

)2

= P

ρ2
2

[
(ρ1 +3ρ2)a1 −2ρ2b −P

]
.

Hence there are some admissible values of a1,b,P such that χ has complex roots.

4.3.3. Case (r,u) = (ρ1, v)

We obtain the following system:

∂tρi +div(ρi vi ) = 0, i = 1,2,

∂t v1 + (v1 ·∇)v1 +curl(v2)∧ (v − v1)+∇(U1)+ ρ2

2ρ
∇(TrP )+ 1

ρ
div(ρ1P )T = 0,

∂t v2 + (v2 ·∇)v2 +curl(v2)∧ (v − v2)+∇(U2)− ρ1

2ρ
∇(TrP )+ 1

ρ
div(ρ1P )T = 0,

∂t P + (v ·∇)P + ∂v

∂x
P +P

(
∂v

∂x

)T

= 0.

In 1d , the characteristic polynomial is given by

χ(λ) =
[

(v1 −λ)2(v2 −λ)2 −ρ1

(
a1 +3

ρ1

ρ2
P +2

ρ2

ρ2
P

)
(v2 −λ)2 −ρ2

(
a2 +ρ1

P

ρ2

)
(v1 −λ)2

+ρ1ρ2

[(
a1 +3

ρ1

ρ2
P +2

ρ2

ρ2
P

)(
a2 +ρ1

P

ρ2

)
−

(
b + (2ρ1 +ρ2)

P

ρ2

)2]]
(v −λ).
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Let us look at the case v1 = v2 = v . If we denote X := (v −λ)2, we get that

χ(λ)

v −λ =X 2 −
[
ρ1

(
a1 +3

ρ1

ρ2
P +2

ρ2

ρ2
P

)
+ρ2

(
a2 +ρ1

P

ρ2

)]
X

+ρ1ρ2

[(
a1 +3

ρ1

ρ2
P +2

ρ2

ρ2
P

)(
a2 +ρ1

P

ρ2

)
−

(
b + (2ρ1 +ρ2)

P

ρ2

)2]
=: Q(X ).

The discriminant of Q(X ) is

∆ :=
[
ρ1

(
a1 +3

ρ1

ρ2
P +2

ρ2

ρ2
P

)
+ρ2

(
a2 +ρ1

P

ρ2

)]2

−4ρ1ρ2

[(
a1 +3

ρ1

ρ2
P +2

ρ2

ρ2
P

)(
a2 +ρ1

P

ρ2

)
−

(
b + (2ρ1 +ρ2)

P

ρ2

)2]
=

[
ρ1

(
a1 +3

ρ1

ρ2
P +2

ρ2

ρ2
P

)
−ρ2

(
a2 +ρ1

P

ρ2

)]2

+4ρ1ρ2

(
b + (2ρ1 +ρ2)

P

ρ2

)2

> 0.

Hence Q has two real roots. This gives four roots for χ. In order that the roots of χ be
real, the roots of Q have to be positive. This gives the condition

0 <
(

a1 +3
ρ1

ρ2
P +2

ρ2

ρ2
P

)(
a2 +ρ1

P

ρ2

)
−

(
b + (2ρ1 +ρ2)

P

ρ2

)2

< P

ρ2

(
ρ1(a1 +a2 −2b)+2ρ(a2 −b)−P

)
.

Hence there are some admissible values of a1, a2,b,P such that χ has complex roots.

5. Appendix

5.1. Computation of the characteristic polynomial
We compute here the characteristic polynomial of the matrix A(Y ,ξ) given at the

beginning of Section 3, in order to get the eigenvalues of this matrix. We first state two
lemmas which will be useful in the proof.

Lemme 3. For any ξ ∈Rd , one has C (ξ)D(ξ) = (ξT Pξ)Id +PξξT , where C (ξ) and D(ξ)
are the matrices defined in the beginning of Section 3.

The proof of this lemma can be obtained by a direct computation. The second
lemma is also elementary:

Lemme 4. Let x, y ∈Rd . Consider the matrix B := Id +x yT . Then the determinant of B
is given by det(B) = 1+x · y. Furthermore, when det(B) ̸= 0,

B−1 = Id − 1

1+x · y
x yT .
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Proof. By density and continuity of the determinant, we can restrict ourselves to the
case x · y ̸= 0. We see that the linear space y⊥ is a subspace of the eigenspace of B
associated to the eigenvalue 1, of dimension d −1. Furthermore, x is an eigenvector
of B for the eigenvalue 1+x · y . Hence B is diagonalizable and det(B) = 1+x · y . The
formula for B−1 can be checked by computing the product BB−1.

We will proceed by using the Gaussian elimination method to obtain an upper
block triangular matrix. Since the matrix A(Y ,ξ) is quite large, we will perform the
operations on the blocks rather than the coefficients. When doing this, one has to be
careful that blocks generally do not commute with each other. Hence it is important to
keep in mind that operations on rows of blocks are made through left multiplication,
while operations on block columns are performed through right multiplication. By
definition, the characteristic polynomial of A(Y ,ξ) is given by

χA(Y ,ξ)(λ) :=

∣∣∣∣∣∣∣∣∣∣∣

v2 ·ξ−λ ρ2ξ
T 0 0 0

αξ (v ·ξ−λ)Id +ξ(v2 − v)T (β+P/ρ)ξ 0 C (ξ)
0 0 v ·ξ−λ ρξT 0
δξ 0 (γ+P/ρ)ξ (v ·ξ−λ)Id C (ξ)
0 0 0 D(ξ) (v ·ξ−λ)Id

∣∣∣∣∣∣∣∣∣∣∣
.

We multiply the last block column by −(v ·ξ−λ)−1D(ξ) and add it to the fourth block
column. By Lemma 3, the characteristic polynomial is equal to:

χA(Y ,ξ)(λ) =

∣∣∣∣∣∣∣∣∣∣∣

v2 ·ξ−λ ρ2ξ
T 0 0 0

αξ (v ·ξ−λ)Id +ξ(v2 − v)T (β+P/ρ)ξ N0 C (ξ)
0 0 v ·ξ−λ ρξT 0
δξ 0 (γ+P/ρ)ξ M0 C (ξ)
0 0 0 0 (v ·ξ−λ)Id

∣∣∣∣∣∣∣∣∣∣∣
.

(2.59)
where we defined

M0 := 1

v ·ξ−λ
(
[(v ·ξ−λ)2 −ξT Pξ]Id −PξξT )

,

and

N0 := −1

v ·ξ−λ
[
(ξT Pξ)Id +PξξT ]

.

We now multiply the third block column of (2.59) by −ρξT /(v ·ξ−λ) and add it to the
fourth block column. We obtain that

χA(Y ,ξ)(λ) =

∣∣∣∣∣∣∣∣∣∣∣

v2 ·ξ−λ ρ2ξ
T 0 0 0

αξ (v ·ξ−λ)Id +ξ(v2 − v)T (β+P/ρ)ξ N1 C (ξ)
0 0 v ·ξ−λ 0 0
δξ 0 (γ+P/ρ)ξ M1 C (ξ)
0 0 0 0 (v ·ξ−λ)Id

∣∣∣∣∣∣∣∣∣∣∣
,

(2.60)
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where

N1 := −1

v ·ξ−λ
[
(ξT Pξ)Id +2PξξT +ρβξξT ]

, (2.61)

and

M1 := 1

v ·ξ−λ
([

(v ·ξ−λ)2 −ξT Pξ
]

Id −2PξξT −ργξξT )
= (v ·ξ−λ)2 −ξT Pξ

v ·ξ−λ
[

Id − 1

(v ·ξ−λ)2 −ξT Pξ

(
2P +ργ)

ξξT
]

.

By Lemma 4, it follows that

M−1
1 = v ·ξ−λ

(v ·ξ−λ)2 −ξT Pξ

Id + 1

1− 2ξT Pξ+ργ
(v ·ξ−λ)2−ξT Pξ

1

(v ·ξ−λ)2 −ξT Pξ
(2P +ργ)ξξT


= v ·ξ−λ

(v ·ξ−λ)2 −ξT Pξ

[
Id + 1

(v ·ξ−λ)2 −3ξT Pξ−ργ (2P +ργ)ξξT
]

(2.62)

(recall that ξT ξ= 1). We now multiply the fourth block column of (2.60) by −M−1
1 δξ

to the right and add it to the first block column. We obtain that the characteristic
polynomial is equal to the determinant of an upper block triangular matrix:

χA(Y ,ξ)(λ) =
∣∣∣∣B1 B2

0 B3

∣∣∣∣= |B1||B3|, (2.63)

where

B1 :=
(

v2 ·ξ−λ ρ2ξ
T

αξ−N1M−1
1 δξ (v ·ξ−λ)Id +ξ(v2 − v)T

)
,

B2 :=
(

0 0 0
(β+P/ρ)ξ N1 C (ξ)

)
,

and

B3 :=
 v ·ξ−λ 0 0

(γ+P/ρ)ξ M1 C (ξ)
0 0 (v ·ξ−λ)Id

 .

In view of (2.63), we need to compute the determinants of the matrices B1 and B3.
Since B3 is block triangular, its determinant is equal to the product of the determinants
of each diagonal block. By Lemma 4,

|B3| =(v ·ξ−λ)|M1||(v ·ξ−λ)Id |

=(v ·ξ−λ)

[
(v ·ξ−λ)2 −ξT Pξ

v ·ξ−λ
]d (

1− 2ξT Pξ+ργ
(v ·ξ−λ)2 −ξT Pξ

)
(v ·ξ−λ)d(d+1)/2

=(v ·ξ−λ)d(d−1)/2+1 [
(v ·ξ−λ)2 −ξT Pξ

]d−1 [
(v ·ξ−λ)2 −3ξT Pξ−ργ]

.
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We now compute the determinant of B1. Let us define

E := (v ·ξ−λ)Id +ξ(v2 − v)T = (v ·ξ−λ)

[
Id + 1

v ·ξ−λξ(v2 − v)T
]

. (2.64)

By Lemma 4,

E−1 = 1

v ·ξ−λ

Id − 1

1+ v2·ξ−v ·ξ
v ·ξ−λ

1

v ·ξ−λξ(v2 − v)T


= 1

v ·ξ−λ
[

Id − 1

v2 ·ξ−λ
ξ(v2 − v)T

]
. (2.65)

We now multiply the second block row of B1 by −ρ2ξ
T E−1 and add it to the first block

row. We obtain that

|B1| =
∣∣∣∣v2 ·ξ−λ−ρ2ξ

T E−1(αξ−N1M−1
1 δξ) 0

αξ−N1M−1
1 δξ E

∣∣∣∣
=[

v2 ·ξ−λ−ρ2ξ
T E−1(αξ−N1M−1

1 δξ)
] |E |.

By Lemma 4,

|E | = (v ·ξ−λ)d
(
1+ v2 ·ξ− v ·ξ

v ·ξ−λ
)
= (v2 ·ξ−λ)(v ·ξ−λ)d−1.

We are left to compute the scalar
[
v2 ·ξ−λ−ρ2ξ

T E−1(αξ−N1M−1
1 δξ)

]
. First, by Equa-

tion (2.65),

ξT E−1 = 1

v ·ξ−λξ
T − 1

(v ·ξ−λ)(v2 ·ξ−λ)
(v2 − v)T .

It follows that

ξT E−1ξ= 1

v2 ·ξ−λ
.

On the other hand, Equation (2.62) gives that

M−1
1 ξ= v ·ξ−λ

(v ·ξ−λ)2 −ξT Pξ

[
1+ 1

(v ·ξ−λ)2 −3ξT Pξ−ργ (2P +ργ)

]
ξ.
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Equation (2.61) then yields

N1M−1
1 ξ

= −1

(v ·ξ−λ)2 −ξT Pξ

[
ξT Pξ+ ξT Pξ

(v ·ξ−λ)2 −3ξT Pξ−ργ (2P +ργ)

+(2P +ρβ)

(
1+ 2ξT Pξ+ργ

(v ·ξ−λ)2 −3ξT Pξ−ργ
)]
ξ

= −1

(v ·ξ−λ)2 −3ξT Pξ−ργ
[
ξT Pξ

(v ·ξ−λ)2 −3ξT Pξ

(v ·ξ−λ)2 −ξT Pξ
+ 2(v ·ξ−λ)2

(v ·ξ−λ)2 −ξT Pξ
P +ρβ

]
ξ

= −1

(v ·ξ−λ)2 −3ξT Pξ−ργ
[
ξT Pξ+ρβ+2

(v ·ξ−λ)2P − (ξT Pξ)2

(v ·ξ−λ)2 −ξT Pξ

]
ξ. (2.66)

Hence

ξT E−1N1M−1
1 ξ

= −1

(v ·ξ−λ)2 −3ξT Pξ−ργ
[
ξT Pξ+ρβ

v2 ·ξ−λ
+ 2ξT Pξ

v ·ξ−λ

−2
(v ·ξ−λ)2(v2 − v)T Pξ− (ξT Pξ)2(v2 − v)T ξ

(v ·ξ−λ)(v2 ·ξ−λ)[(v ·ξ−λ)2 −ξT Pξ]

]
= −1[

(v ·ξ−λ)2 −3ξT Pξ−ργ]
(v2 ·ξ−λ)

×
[

3ξT Pξ+ρβ+ 2(v ·ξ−λ)(v2 − v)T
[
(ξT Pξ)−P

]
ξ

(v ·ξ−λ)2 −ξT Pξ

]
,

and

v2 ·ξ−λ−ρ2ξ
T E−1(αξ−N1M−1

1 δξ)

=v2 ·ξ−λ− αρ2

v2 ·ξ−λ
− ρ2δ[

(v ·ξ−λ)2 −3ξT Pξ−ργ]
(v2 ·ξ−λ)

×
[

3ξT Pξ+ρβ+ 2(v ·ξ−λ)(v2 − v)T
[
(ξT Pξ)−P

]
ξ

(v ·ξ−λ)2 −ξT Pξ

]

=
[
(v2 ·ξ−λ)2 −αρ2

][
(v ·ξ−λ)2 −3ξT Pξ−ργ]−ρ2δ

(
3ξT Pξ+ρβ)

(v2 ·ξ−λ)
[
(v ·ξ−λ)2 −3ξT Pξ−ργ]

+ 2ρ2δ(v ·ξ−λ)(v2 − v)T
[
P − (ξT Pξ)

]
ξ

(v2 ·ξ−λ)
[
(v ·ξ−λ)2 −3ξT Pξ−ργ][

(v ·ξ−λ)2 −ξT Pξ
] .

Finally,

χA(Y ,ξ)(λ) =(v ·ξ−λ)(d+2)(d−1)/2+1 [
(v ·ξ−λ)2 −ξT Pξ

]d−2

× [
2ρ2δ(v ·ξ−λ)(v2 − v)T [

P − (ξT Pξ)
]
ξ+ [

(v ·ξ−λ)2 −ξT Pξ
]

q(λ)
]

,
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where

q(λ) =:
[
(v2 ·ξ−λ)2 −αρ2

][
(v ·ξ−λ)2 −3ξT Pξ−ργ]−ρ2δ

(
3ξT Pξ+ρβ)

,

as claimed in Proposition 2.1.

Case of the system without lift terms

When there are no lift terms the previous computations can be adapted to compute
the characteristic polynomial of the modified system. Let us also denote A′(Y ,ξ) the
matrix of System (2.16). It is given by

A′(Y ,ξ) =


v2 ·ξ ρ2ξ

T 0 0 0
αξ (v2 ·ξ)Id (β+P/ρ)ξ 0 C (ξ)
0 0 v ·ξ ρξT 0
δξ 0 (γ+P/ρ)ξ (v ·ξ)Id C (ξ)
0 0 0 D(ξ) (v ·ξ)Id

 .

Thus the only difference is that one should replace the matrix E of (2.64) by

E ′ := (v2 ·ξ−λ)Id , hence E−1 = 1

v2 ·ξ−λ
Id .

All computations of the proof stay unchanged until Equation (2.64). We deduce as in
(2.63) that

χA′(Y ,ξ) = |B1||B3|,
with

|B1| =
[
v2 ·ξ−λ−ρ2ξ

T E ′−1(αξ−N1M−1
1 δξ)

] |E ′|
and

|B3| = (v ·ξ−λ)d(d−1)/2+1 [
(v ·ξ−λ)2 −ξT Pξ

]d−1 [
(v ·ξ−λ)2 −3ξT Pξ−ργ]

as previously, substituting E ′ to E . We compute that

|E ′| = (v2 ·ξ−λ)d , ξT E ′−1ξ= 1

v2 ·ξ−λ
and , with the help of (2.66),

ξT E ′−1N1M1ξ=− 3ξT Pξ+ρβ[
(v ·ξ−λ)2 −3ξT Pξ−ργ]

(v2 ·ξ−λ)
.

Hence

|B1| = (v2 ·ξ−λ)d−1

[
(v2 ·ξ−λ)2 −ρ2α

][
(v ·ξ−λ)2 −3ξT Pξ−ργ]−ρ2δ[3ξT Pξ+ρβ]

(v ·ξ−λ)2 −3ξT Pξ−ργ .
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Finally, the characteristic polynomial is equal to

χA′(Y ,ξ) = (v2 ·ξ−λ)d−1(v ·ξ−λ)d(d−1)/2+1 [
(v ·ξ−λ)2 −ξT Pξ

]d−1
q(λ),

where

q(λ) := [
(v2 ·ξ−λ)2 −ρ2α

][
(v ·ξ−λ)2 −3ξT Pξ−ργ]−ρ2δ[3ξT Pξ+ρβ].
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Deuxième partie

Modèles d’avalanche
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3. Un modèle moyenné sur la
profondeur pour les
écoulements granulaires
consistant avec la rhéologie µ(I )
incompressible

Dans ce chapitre, on dérive un modèle moyenné sur la profondeur consistant avec
la rhéologie µ(I ) pour un écoulement granulaire incompressible sur plan incliné. Les
deux premières variables du modèle sont la profondeur et la vitesse moyenne. Le
cisaillement est aussi pris en compte via une troisième variable appelée enstrophie.
Le système obtenu est un système hyperbolique de lois de conservation, admettant
une équation supplémentaire pour l’énergie. Le système est dérivé à partir d’un déve-
loppement asymptotique des variables de l’écoulement en puissances du paramètre
de couche mince. Cette méthode garantit la consistance du modèle avec la rhéologie.
Le profil de vitesse est un profil de Bagnold à l’ordre dominant et la correction du
premier ordre de ce profil peut être calculée pour des écoulements qui ne sont pas
stationnaires uniformes. La correction du premier ordre à la loi de friction granulaire
classique est également écrite de manière consistante. Par conséquent, le seuil d’in-
stabilité pour un écoulement stationnaire et uniforme est le même pour le modèle
moyenné sur la profondeur et pour les équations de la rhéologie µ(I ). De plus, une
version du modèle d’ordre supérieur qui contient des termes diffusifs est également
présentée. Le taux de croissance spatial, la vitesse de phase et la fréquence de coupure
de la version avec diffusion sont en bon accord avec les données expérimentales et
les prédictions théoriques de la rhéologie. La structure mathématique des équations
permet d’utiliser des schémas numériques réputés et stables. Des simulations d’ondes
de surface granulaires sont présentées. Le modèle a les mêmes limites que la rhéologie
µ(I ), en particulier pour les transitions solide/liquide et liquide/gaz, et nécessite donc
une régularisation pour ces transitions. Une telle régularisation sera proposée au
chapitre 4. Le chapitre 3 est tiré de l’article (DELEAGE et RICHARD 2025) :

Deleage, E., & Richard, G. L. (2025). A depth-averaged model for granular flow
consistent with the incompressible rheology. Journal of Fluid Mechanics, 1009, A57.
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3. Modèle consistant d’écoulement granulaire incompressible – 1. Introduction

1. Introduction
The concept of granular fluid can be used in order to model the flow of a large

quantity of solid particles ( see Andreotti et al. 2013). In dense regimes, the particles
tend to stay in contact with each other and a macroscopic behaviour can be observed.
This kind of flow can be found in many geophysical contexts, for which, in the presence
of topography, the flow is driven by gravity. Two examples are landslides or dry snow
avalanches. Modelling the flow of granular media with a good accuracy is thus of
crucial importance in a large range of applications.

Granular flows exhibit complex behaviours that are distinct from more “classical”
flows. In the context of flow down an inclined plane, a way to model these particular as-
pects is to use an adequate friction law. Granular friction laws were first introduced at
the depth-averaged level. For numerical applications, depth-averaged models present
the advantage of a reduced computation time. A first attempt to model granular
flows specifically was proposed in 1989 by Savage et al. 1989 using a solid friction law.
This model has some similarities with older models of dense snow avalanches, which
also added an empirical fluid friction term. The approach of Savage et al. 1989 was
extended to two dimensions (2D) and to complex topographies and applied to many
cases of geophysical flows (e.g. Denlinger et al. 2001; Pitman et al. 2003; Pudasaini et al.
2003; Bouchut and Westdickenberg 2004; Denlinger et al. 2004; Mangeney-Castelnau,
Bouchut, et al. 2005; Larrieu et al. 2006; Peruzzetto et al. 2019).

As it became clear that granular flows could not always be described by a solid
friction law, a more elaborate friction law was proposed. An empirical approach was
used by Pouliquen 1999b to derive a friction law based on experimental observations,
still at the depth-averaged level. This law was refined by Pouliquen and Forterre 2002
who also proposed a non-monotonic law for the friction coefficient, distinguishing
between dynamic and static regimes, as well as an intermediate regime taken into
account by an extrapolation function. Contrary to the assumption of constant solid
friction, these friction laws are compatible with the existence of steady uniform flows
over a range of inclination angles for granular flows down a rough incline. The non-
monotonic friction law is able to capture frictional hysteresis.

A specific granular rheology was then presented (GdR MiDi 2004), in which the
friction coefficient µ is a function of a dimensionless parameter I , called inertial
number. The inertial number is interpreted as a ratio between two time-scales related
to the microscopic structure of the granular media (GdR MiDi 2004). Thisµ(I ) rheology
was then generalized into a constitutive law at the bulk level, for two-dimensional
(2D) flows (GdR MiDi 2004; Pouliquen, Cassar, et al. 2005; Jop et al. 2005) and three-
dimensional (3D) flows (Jop et al. 2006; Forterre 2006). The basal friction law of the
model of Pouliquen and Forterre 2002 can be reinterpreted in the context of the µ(I )
rheology (Andreotti et al. 2013). Extensions of the depth-averaged model to the 2D
case on complex topography with applications to geophysical flows were proposed
with the friction law of Pouliquen 1999b (Mangeney-Castelnau, Vilotte, et al. 2003) or
with the non-monotonic friction law of Pouliquen and Forterre 2002 (Mangeney et al.
2007).
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Roll waves for dense granular flows were experimentally observed by Forterre and
Pouliquen 2003, who also measured the phase velocity and the spatial growth rate.
This instability occurs above a critical Froude number and disappears above a cut-
off frequency. This cut-off frequency does not appear in models that only take into
account friction effects. By adding a diffusive term to the depth-averaged model,
Forterre 2006 and Gray and Edwards 2014 derived models capable of predicting the
existence of this cut-off frequency in agreement with the experimental data of Forterre
and Pouliquen 2003. The spatial growth rate is also accurately predicted.

The diffusive model of Gray and Edwards 2014 was used with the friction coefficient
of Pouliquen and Forterre 2002 in the dynamic regime to model granular roll waves
(Razis et al. 2014) and dense granular avalanches (Baker, Barker, et al. 2016), as well as
with the non-monotonic friction law (Pouliquen and Forterre 2002; Edwards, Viroulet,
et al. 2017) to model erosion-deposition waves and the formation of levees (Edwards
and Gray 2015; Edwards, Viroulet, et al. 2017; Rocha et al. 2019). The importance of
the diffusive term in the depth-averaged model was highlighted by Baker, Barker, et al.
2016 and Rocha et al. 2019 and also by Baker, C. Johnson, et al. 2016 for segregation-
induced finger formation in granular flows.

Despite the many successes of the µ(I ) rheology in describing granular flows, it
has been shown by Barker, Schaeffer, Bohórquez, et al. 2015 that this rheology is
well-posed for intermediate inertial numbers, but can be ill-posed for low or high
inertial numbers. This ill-posed behaviour is due to a short-wavelength instability
with an infinite growth rate in the infinite wavenumber limit. Modifications to the
µ(I ) rheology involving compressibility were proposed by Heyman et al. 2017, Barker,
Schaeffer, Shearer, et al. 2017 and Schaeffer et al. 2019 to solve this problem (see also
the remarks of Goddard et al. 2018). Further work on this subject was provided by
Goddard et al. 2017.

In the case of thin layers, depth-averaged models can be derived by introducing a
small parameter ε, which is a ratio between a vertical and a horizontal length scale,
defining thus a shallow flow, and by using an asymptotic method with a systematic
expansion of the variables in the governing equations as power series of the parameter
ε. The leading order, or zeroth order in ε, governs the steady uniform flows. To model
flows that are not stationary and uniform, it is important to ensure model consistency
up to the first order in ε. The definition of the consistency of a model (see Richard,
Gisclon, et al. 2019) is relative to a set of hypotheses concerning the order of magnitude
of the dimensionless numbers of the problem. In the case of granular flows down
an incline, these numbers are the Froude number and the slope. Both are of O(1)
with respect to the small parameter ε, since neither is particularly small in the case of
granular flows studied in the laboratory or encountered in nature. A model can always
be written in such a way that the dominant terms are of O(1). A model written in this
way is said to be consistent of order n if, after substituting the model variables with
their asymptotic expansions, all the terms disappear except for an O(εn+1) remainder.

Model consistency means that the approximation used to derive the model is con-
sistent. In practice only the first-order consistency is really important. Therefore the
consistency implies that no term of first order is neglected. From a more physical point
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of view, the relations obtained for steady uniform flows are not exactly valid for vari-
able flows. Consistency allows us to calculate the first-order corrections that appear
for variable flows. These corrections result in terms of order 1 in the model. One of the
consequences of writing an inconsistent model is that the stability threshold of the
Kapitza instability predicted by the model differs from the threshold corresponding
to the rheology in the long-wave limit. Consistency, on the other hand, ensures that
the long-wave instability threshold predicted by the model and by rheology coincides
exactly.

This asymptotic method was already used to derive consistent depth-averaged
models for Newtonian fluids (e.g. Ruyer-Quil et al. 2000; Richard, Ruyer-Quil, et al.
2016, power-law fluids (Noble et al. 2013) and viscoplastic flows (Denisenko, Richard,
et al. 2023), but no depth-averaged model of dense granular flow consistent with the
incompressible µ(I ) rheology has been derived. As a consequence, the instability
threshold of steady uniform flows of the existing models (e.g. Forterre and Pouliquen
2003; Gray and Edwards 2014) is different from the theoretical one that was calculated
by Forterre 2006 with the µ(I ) rheology in the long-wave limit, because the bottom
friction has been estimated from steady uniform flow relations, so that the first-order
correction in ε has been neglected.

Another inconsistency is due to the treatment of the depth-averaged value 〈u2〉 of
the square of the velocity u in the momentum flux. Since this flux term is already
of first-order in ε, it can be estimated, for a first-order model, from the zero-order
expression of u (steady uniform flows relations). If a no-slip condition is assumed
at the bottom, the flow is strongly sheared and shear effects cannot be consistently
neglected in the depth-averaged model. A first approach that has been used by
Forterre and Pouliquen 2003 and Gray and Edwards 2014 is to introduce a parameter
α, called shape factor, which depends on the velocity profile, writing 〈u2〉 = α〈u〉2.
For a sheared flow, the shape factor is always greater than 1. In the case of steady
and uniform granular flows, the velocity profile is a Bagnold profile (Andreotti et al.
2013) and the shape factor is equal to 5/4. If α= 5/4, the model strongly overestimates
the instability threshold of the Kapitza instability (Forterre 2006). The agreement is
better if a constant velocity profile is assumed (α= 1). The inconsistency of existing
models therefore leads either to very significant deviations from predictions of the µ(I )
rheology if the Bagnold profile is taken into account, or, paradoxically, to more rea-
sonable (but nonetheless significant) deviations if the velocity profile of equilibrium
granular flows is not taken into account. This shortcoming is directly attributable to
the inconsistency of the derivation. A consistent model exactly predicts the instability
threshold corresponding to the rheology while taking into account a Bagnold velocity
profile for a steady uniform flow. Consistency at the first order of accuracy is sufficient
to obtain these properties. Second-order terms are only useful to include diffusive
effects in the model since diffusion is absent in a first-order model.

An additional difficulty is that the mathematical structure of the model is not sat-
isfactory if α ̸= 1, because there is no energy balance equation for the system. The
compatibility with an energy balance equation implies α= 1. The proof of Richard
and Gavrilyuk 2012 can be used straightforwardly for the model of Gray and Edwards
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2014. It is usually better to take α= 1, thus loosing the consistency for a sheared flow.
A strategy for taking into account a depth-varying velocity profile in a depth-averaged

model in a consistent and well-posed way is to take the shear into account with an
additional depth-averaged variable 〈(u −〈u〉)2〉/h2 (where h is the depth and 〈·〉 the
depth-averaging operator), called enstrophy because it is related to the square of the
vorticity. This approach was initiated by Teshukov 2007 and developed by Richard and
Gavrilyuk 2012 and Richard, Ruyer-Quil, et al. 2016 in particular. The depth-averaged
model is thus a system of three equations which admits, by construction, an energy
balance equation. The variables are the depth of the flow, the depth-averaged velocity,
which are the usual variables for shallow-water equations, and the enstrophy. In one
dimension (1D) and in the absence of diffusion, the obtained model is a hyperbolic
system of conservation laws analogous to the compressible Euler equations. This en-
ables to use well-known reliable and stable numerical schemes. This approach is quite
general and has been used to derive depth-averaged models in various contexts, see
for instance Richard, Ruyer-Quil, et al. 2016, Denisenko, Richard, et al. 2023, Richard
2024.

The motivation of this work is to derive a depth-averaged, first-order consistent,
well-posed model for granular flows down an inclined plane described by the standard
µ(I ) rheology, while taking into account a Bagnold velocity profile for steady uniform
flows. The model must admit exactly an energy balance equation, both for physical
and numerical reasons, since the stability of a numerical scheme implies preserving
the energy balance in a discrete framework. Another advantage of the consistency
of the derivation is the possibility of reconstructing the depth profile of velocity,
from the values of the depth-averaged quantities calculated by the model. This type
of reconstruction has been obtained in the case of turbulent open-channel flows
(Richard, Couderc, et al. 2023) and for viscoplastic yield-stress fluids (Denisenko,
Richard, et al. 2023).

The paper is organized as follows: in §2, we present the equations that govern the
motion of the granular medium, as well as their dimensionless form in the long-wave
limit. In §3, we derive explicitly the asymptotic expansions at orders 0 and 1 in ε. In §4,
the depth-averaged model is derived. The model is analysed in §5 and is compared
with experimental data of Forterre and Pouliquen 2003. An extended version of the
model, that takes into account diffusive effects, is given in §5.4. A numerical resolution
in the case of granular roll waves is presented in §5.6. The reconstruction of the velocity
profile is obtained in §5.1 and an example is given in §5.6. The limitations of the model
are explained in §6.

2. Governing equations

2.1. Constitutive equations
We study the flow of a granular fluid, which is described by its density ρ and its

velocity v . We assume that the fluid is made of solid particles. Hence the density is
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proportional to φ the volume fraction of the beads and is written

ρ = ρpφ, (3.1)

where the constant ρp is the density of the beads. We also suppose that the volume
fraction φ is constant, which implies that the flow is incompressible. We assume that
the fluid is flowing down an inclined plane that makes an angle θ with the horizontal.
The motion of the fluid is described by the mass and momentum balance equations,
which read in the incompressible case with constant density

∂ρv

∂t
+div

(
ρv ⊗v

)= divσ+ρg ,

div v = 0,

φ=φc constant.

(3.2)

The second order tensor σ is called the Cauchy stress tensor and can be written

σ=−pId +τ, (3.3)

where Id is the identity tensor. The quantity p is the pressure and τ is the deviatoric
stress tensor. It is given by the constitutive law

τ= ηeγ̇, (3.4)

where
γ̇= grad v + (

grad v
)T (3.5)

is the strain-rate tensor and ηe is an effective viscosity. In the isotropic case, ηe is a
scalar. In order to define the effective viscosity, we introduce the inertial number I ,
which is a dimensionless parameter given by the relation (GdR MiDi 2004)

I = |γ̇|d√
p/ρp

. (3.6)

The quantity d is the diameter of a bead, and |γ̇| is the norm of the second order tensor
γ̇, defined by

|γ̇| =
√
γ̇ : γ̇

2
. (3.7)

We also introduce the friction coefficient µ(I ), which depends only on I . The depen-
dence is experimentally determined with three constants µ1, µ2 and Im as (Jop et al.
2006)

µ(I ) =µ1 + µ2 −µ1

1+ Im/I
. (3.8)

The two constants µ1 and µ2 are limit cases: the value µ2 is the maximal value of µ(I ),
obtained when I →∞, the value µ1 is the minimal value, obtained when I = 0, and the
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granular fluid only flows when |τ| >µ1p. The existence of a maximum value for the
friction coefficient is debated (see Holyoake et al. 2012; Barker and Gray 2017, but only
the standard µ(I ) rheology will be considered in this article. Note that this relation
can be inverted to write

I = Im
µ−µ1

µ2 −µ
(3.9)

The expression of the effective viscosity is then

ηe =µ(I )
p

|γ̇| . (3.10)

We denote by z the coordinate in the direction normal to the inclined plane and by
x the coordinate in the direction parallel to the inclined plane (see Figure 3.1). The
components of the velocity v are u and w in the x-direction and in the z-direction
respectively.

Figure 3.1. – Definition sketch.

The system (3.2) admits an energy balance equation. The mechanical energy density
E of the fluid is equal to the sum of the kinetic energy density and the gravitational
potential energy density:

E = 1

2
ρ|v |2 −ρg x sinθ+ρg z cosθ. (3.11)

The energy balance equation is then

∂E

∂t
+div(E v ) = div (σ ·v )− σ : γ̇

2
. (3.12)

Using the incompressibility condition, Equation (3.12) can also be written

∂E

∂t
+div

[(
E +p

)
v
]= div (τ ·v )− τ : γ̇

2
. (3.13)

The granular fluid is assumed to be delimited downwards by the inclined plane
at z = 0, and a free surface upwards at z = h. The field h is a function of (t , x). For
any field f depending on the variable z, we write f (0) := f |z=0, and f (h) := f |z=h . We
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denote by n(t , x) the unit vector normal to the free surface and pointing outward the
flow. It is given by

n = 1√
1+|∂h/∂x|2

(
−∂h

∂x
,1

)T

. (3.14)

We can now define the boundary conditions satisfied by the velocity:
– At z = 0, we assume a non-penetration condition given by

w(0) = 0, (3.15)

as well as a no-slip condition, given by

u(0) = 0. (3.16)

– At z = h, the velocity drives the evolution of the free surface via the kinematic
boundary condition

∂h

∂t
+u(h)

∂h

∂x
= w(h). (3.17)

The dynamic boundary condition states that the normal stresses are continuous
across the free surface. The normal stress above the free surface is given by the
atmospheric pressure patm. Without loss of generality, this constant can be taken
equal to zero. This leads to the equation

σ(h) ·n = 0, (3.18)

which expands as 
τxz(h)+p(h)

∂h

∂x
−τxx(h)

∂h

∂x
= 0, (3.19a)

τzz(h)−p(h)−τxz(h)
∂h

∂x
= 0. (3.19b)

2.2. Dimensionless form of the equations
We write here all equations in a non-dimensional form. In order to do so, we denote,

for any field f , a corresponding dimensionless field by f̃ .
We assume here that the flow occurs at a typical horizontal scale L0, and a typical

vertical scale h0, such that ε= h0/L0 ≪ 1 is a small parameter. We also assume that
the horizontal velocity is of order u0, such that the Froude number

F = u0√
g h0

(3.20)

is of O(1), as it is the case for instance in the experiments performed by Pouliquen
1999b and Forterre and Pouliquen 2003. We introduce the following dimensionless

142



3. Modèle consistant d’écoulement granulaire incompressible – 2. Governing
equations

variables:

x̃ = x

L0
, z̃ = z

h0
, h̃ = h

h0
. (3.21)

The time and velocity are scaled according to the usual shallow-water scaling as

t̃ = t
u0

L0
, ũ = u

u0
, w̃ = w

εu0
, (3.22)

The dimensionless pressure, density and size of the beads are found by

p̃ = p

ρp g h0
, ρ̃ = ρ

ρp
=φ, d̃ = d

h0
. (3.23)

We also scale the deviatoric stress tensor as

τ̃xx = τxx

ερp g h0
, τ̃zz = τzz

ερp g h0
, τ̃xz = τxz

ρp g h0
(3.24)

and the strain-rate tensor and energy as

| ˜̇γ| = |γ̇|h0

u0
, Ẽ = E

ρp u2
0

. (3.25)

We obtain

τ̃xx = 2µ(I )
p̃

| ˜̇γ|
∂ũ

∂x̃
, τ̃zz = 2µ(I )

p̃

| ˜̇γ|
∂w̃

∂z̃
, τ̃xz =µ(I )

p̃

| ˜̇γ|

(
∂ũ

∂z̃
+ε2∂w̃

∂x̃

)
. (3.26)

with

I = | ˜̇γ|d̃√
p̃

F, (3.27)

and

| ˜̇γ| =
[(
∂ũ

∂z̃
+ε2∂w̃

∂x̃

)2

+2ε2
(
∂ũ

∂x̃

)2

+2ε2
(
∂w̃

∂z̃

)2]1/2

. (3.28)

The dimensionless energy reads

Ẽ = 1

2
φ

(
ũ2 +ε2w̃ 2)− φsinθ

εF 2
x̃ + φcosθ

F 2
z̃. (3.29)

The divergence-free condition stays true for the new variables:

∂ũ

∂x̃
+ ∂w̃

∂z̃
= 0. (3.30)

The momentum equation in the x-direction becomes

∂φũ

∂t̃
+ ∂φũ2

∂x̃
+ ∂φũw̃

∂z̃
= φsinθ

εF 2
− 1

F 2

∂p̃

∂x̃
+ ε

F 2

∂τ̃xx

∂x̃
+ 1

εF 2

∂τ̃xz

∂z̃
. (3.31)

143



3. Modèle consistant d’écoulement granulaire incompressible – 3. Asymptotic
expansion up to the first order

In the z-direction, we obtain

ε2
(
∂φw̃

∂t̃
+ ∂φũw̃

∂x̃
+ ∂φw̃ 2

∂z̃

)
=−φcosθ

F 2
− 1

F 2

∂p̃

∂z̃
+ ε

F 2

∂τ̃xz

∂x̃
+ ε

F 2

∂τ̃zz

∂z̃
. (3.32)

The energy equation (3.13) gives

∂Ẽ

∂t̃
+div

[(
Ẽ + p̃

F 2

)
ṽ
]
= 1

F 2

[
ũ

(
ε
∂τ̃xx

∂x̃
+ 1

ε

∂τ̃xz

∂z̃

)
+εw̃

(
∂τ̃xz

∂x̃
+ ∂τ̃zz

∂z̃

)]
, (3.33)

where we denoted by ṽ the dimensionless velocity field.
Finally, we can rewrite the boundary conditions. For the velocity, we obtain

ũ(0) = 0, w̃(0) = 0,
∂h

∂t
+ ũ(h̃)

∂h̃

∂x̃
= w̃(h̃). (3.34)

Equations (3.19) become in the new variables
τ̃xz(h̃)+εp̃(h̃)

∂h̃

∂x̃
−ε2τ̃xx(h̃)

∂h̃

∂x̃
= 0, (3.35a)

ετ̃zz(h̃)− p̃(h̃)−ετ̃xz(h̃)
∂h̃

∂x̃
= 0. (3.35b)

3. Asymptotic expansion up to the first order
We now make the hypothesis that every variable f of the problem admits an asymp-

totic expansion as
f = f (0) +ε f (1) +O(ε2). (3.36)

We thus write such an expansion for every dimensionless variable of the problem.
Substituting these expansions into the mass conservation law (3.30), the momentum
balance equations (3.31)–(3.32) and the constitutive law (3.26), taking into account
the boundary conditions, we can compute explicitly all terms in the expansions up to
order 1.
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3.1. Order 0
At leading order, we obtain from Equations (3.31), (3.32), (3.35) the following rela-

tions:

0 = φsinθ

F 2
+ 1

F 2

∂τ̃(0)
xz

∂z̃
, (3.37)

0 =−φcosθ

F 2
− 1

F 2

∂p̃

∂z̃

(0)

(3.38)

0 = τ̃(0)
xz (h̃), (3.39)

0 = p̃(0)(h̃). (3.40)

We integrate the first two equations between z̃ and h̃ using the conditions at z̃ = h̃ to
obtain

τ̃(0)
xz =φsinθ(h̃ − z̃) (3.41)

and
p̃(0) =φcosθ(h̃ − z̃). (3.42)

The pressure is thus hydrostatic at this order. Equation (3.28) gives, after using the
physical assumption that ∂ũ(0)/∂z̃ > 0,

| ˜̇γ|(0) = ∂ũ(0)

∂z̃
. (3.43)

Equation (3.26) then gives
τ̃(0)

xz =µ(0)p̃(0) (3.44)

with µ(0) =µ(I (0)). We have µ(0) = τ(0)
xz /p(0). This yields

µ(0) = tanθ. (3.45)

At order 0, the friction coefficient has the same expression as in the case of a steady
uniform flow. The expression of the inertial number at order 0 is

I (0) = tanθ−µ1

µ2 − tanθ
Im (3.46)

by (3.9). It follows from (3.43) and (3.27) that

∂ũ(0)

∂z̃
= I (0)

d̃F

√
φcosθ(h̃ − z̃), (3.47)

that we integrate using (3.34) to obtain

ũ(0) = 2Ã

3

[
h̃3/2 − (

h̃ − z̃
)3/2

]
, (3.48)
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where we defined

Ã = I (0)

d̃F

√
φcosθ, and A = I (0)

√
φg cosθ

d
. (3.49)

At order 0, the velocity profile in the z-direction is a Bagnold profile, as expected from
the µ(I )-rheology. At this order, the depth-averaged velocity is Ũ (0) = 2Ãh̃3/2/5. If the
characteristic velocity u0 and the vertical scale h0 are taken equal respectively to the
depth-averaged velocity and depth of the steady uniform flow, then Ã = 5/2.

We deduce, using (3.30) ,

∂w̃

∂z̃

(0)

= Ã
[(

h̃ − z̃
)1/2 − h̃1/2

] ∂h̃

∂x̃
, (3.50)

which is integrated as

w̃ (0) = Ã

[
2

3
h̃3/2 − 2

3

(
h̃ − z̃

)3/2 − z̃h̃1/2
]
∂h̃

∂x̃
. (3.51)

Finally, we use (3.26) to obtain

τ̃(0)
xx =−τ̃(0)

zz = 2φsinθ
[

h̃1/2 (
h̃ − z̃

)1/2 − h̃ + z̃
] ∂h̃

∂x̃
. (3.52)

3.2. Order 1
We now investigate Equations (3.31), (3.32) and (3.35) at the first order. At this order

of accuracy, these equations become

∂ũ

∂t̃

(0)

+ ũ(0)∂ũ

∂x̃

(0)

+ w̃ (0)∂ũ

∂z̃

(0)

=− 1

φF 2

∂p̃

∂x̃

(0)

+ 1

φF 2

∂τ̃(1)
xz

∂z̃
, (3.53)

0 =− 1

F 2

∂p̃

∂z̃

(1)

+ 1

F 2

∂τ̃(0)
xz

∂x̃
+ 1

F 2

∂τ̃(0)
zz

∂z̃
(3.54)

0 = τ̃(1)
xz (h̃)+ p̃(0)(h̃)

∂h̃

∂x̃
, (3.55)

0 = τ̃(0)
zz (h̃)− p̃(1)(h̃)− τ̃(0)

xz (h̃)
∂h̃

∂x̃
. (3.56)

In view of the values of τ̃(0)
xz (h̃), τ̃(0)

zz (h̃) and p̃(0)(h̃) (see (3.41), (3.52) and (3.42)), we
obtain from the two last equations

τ̃(1)
xz (h̃) = p̃(1)(h̃) = 0. (3.57)
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We substitute the values of ũ(0), w̃ (0) and p̃(0), using Equation (3.34) to express ∂h̃/∂t̃
at the leading order as

∂h̃

∂t̃
=−Ãh̃3/2∂h̃

∂x̃
+O(ε). (3.58)

Equation (3.58) is the kinematic wave equation for granular flows. This equation was
written by Börzsönyi, Halsey, et al. 2005 at the small Froude number limit where there
is an additional diffusive term due to the pressure. In the present case, with F =O(1),
the kinematic wave equation is obtained at leading order without diffusive term. The
kinematic wave velocity is ã0 = Ãh̃3/2. It is the same value as found by Börzsönyi,
Halsey, et al. 2005 with the expression of Im of Jop et al. 2005, Appendix A.

We obtain
∂τ̃(1)

xz

∂z̃
=φ∂h̃

∂x̃

[
cosθ+ F 2 Ã2

3

(
h̃1/2(h̃ − z̃)3/2 − h̃2)] . (3.59)

This expression is integrated between z̃ and h̃ with the boundary condition. This
yields

τ̃(1)
xz =φ∂h̃

∂x̃

[
F 2 Ã2

3

(
(h̃ − z̃)h̃2 − 2

5
h̃1/2(h̃ − z̃)5/2

)
−cosθ(h̃ − z̃)

]
. (3.60)

We now substitute the values of τ̃(0)
xz and τ̃(0)

zz into the second equation. We find

∂p̃

∂z̃

(1)

=φsinθ
∂h̃

∂x̃

[
h̃1/2(

h̃ − z̃
)1/2

−1

]
, (3.61)

which is integrated between z̃ and h̃ to calculate the expression of the first-order
correction to the pressure as

p̃(1) =φsinθ
∂h̃

∂x̃

[
h̃ − z̃ −2h̃1/2 (

h̃ − z̃
)1/2

]
. (3.62)

We also obtain from (3.28) ∣∣ ˜̇γ
∣∣(1) = ∂ũ

∂z̃

(1)

. (3.63)

Hence, with (3.26), we can write τ̃(1)
xz = µ(I )(1)p̃(0) +µ(I )(0)p̃(1). Therefore, the first-

order correction to the friction coefficient can be consistently written as µ(1) = (τ̃(1)
xz −

µ(0)p̃(1))/p̃(0), which leads to the expression

µ(1) = ∂h̃

∂x̃

[
F 2 Ã2

3cosθ

(
h̃2 − 2

5
h̃1/2(h̃ − z̃)3/2

)
− 1

cos2θ
+2h̃1/2(h̃ − z̃)−1/2 tan2θ

]
. (3.64)

We now deduce the expression of the first-order correction to the inertial number,
writing

I (1) = ∂I

∂µ

∣∣∣∣
µ(0)

µ(1), (3.65)
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to find
I (1) = Im

µ2 −µ1(
µ2 − tanθ

)2µ
(1). (3.66)

We can write
I (1) = B I (0)µ(1) (3.67)

where B = (∂ ln I /∂µ)(µ= tanθ) or

B = µ2 −µ1

(µ2 − tanθ)(tanθ−µ1)
. (3.68)

At first order, the expansion of (3.27) gives

∣∣ ˜̇γ
∣∣(1) = 1

d̃F

I (1)
√

p(0) + I (0)p(1)

2
√

p(0)

 . (3.69)

Equations (3.62), (3.67), (3.63) and (3.42) can be used to obtain

∂ũ

∂z̃

(1)

= Ã
∂h̃

∂x̃

{
BF 2 Ã2

3cosθ

[
h̃2 (

h̃ − z̃
)1/2 − 2

5
h̃1/2 (

h̃ − z̃
)2

]
− B

(
h̃ − z̃

)1/2

cos2θ

+2Bh̃1/2 tan2θ+ tanθ

2

(
h̃ − z̃

)1/2 − h̃1/2 tanθ

}
. (3.70)

The integration of this expression leads to

u(1) = Ã
∂h̃

∂x̃

{
2BF 2 Ã2

9cosθ

[
h̃2

(
h̃3/2 − (

h̃ − z̃
)3/2

)
− h̃1/2

5

(
h̃3 − (

h̃ − z̃
)3

)]
+

(
tanθ− 2B

cos2θ

)
h̃3/2 − (

h̃ − z̃
)

3

3/2

+ (2B tanθ−1) h̃1/2z̃ tanθ

}
, (3.71)

which is the consistent first-order correction to the Bagnold velocity profile.

4. Derivation of the depth-averaged equations

4.1. Averaged variables
We now define depth-averaged variables, and give an explicit asymptotic expansion

of these variables up to the first order. The average over the depth of any quantity X is
defined as

〈X 〉 = 1

h

∫ h

0
X dz. (3.72)
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To lighten the notation, the depth-averaged velocity is denoted by U = 〈u〉. The
average velocity Ũ admits an asymptotic expansion given by

Ũ = Ũ (0) +εŨ (1) +O(ε2), (3.73)

where, by (3.48),

Ũ (0) = 2

5
Ãh̃3/2, (3.74)

and, from (3.71), after some computations,

Ũ (1) = ÃB

10

∂h̃

∂x̃

[
F 2 Ã2

cosθ
h̃7/2 +

(
6tan2θ−4− 3tanθ

B

)
h̃3/2

]
. (3.75)

Note that the first-order correction U (1) can be written

Ũ (1) = Ũ −Ũ (0)

ε
+O(ε) = 1

ε

(
Ũ − 2

5
Ãh̃3/2

)
+O(ε), (3.76)

To simplify the notations, we define C = tanθ(2tanθ−1/B), i.e.

C = tan2θ+ tanθ

[
(tanθ−µ1)2

µ2 −µ1
+µ1

]
. (3.77)

Note that C =C (θ) is a positive increasing function of θ. It takes values in the interval
[2µ2

1 ,2µ2
2 ] if θ ∈ [arctanµ1,arctanµ2]. With this new notation, the function Ũ (1) can be

written:

Ũ (1) = ÃB

10

∂h̃

∂x̃

[
F 2 Ã2

cosθ
h̃7/2 + (3C −4)h̃3/2

]
. (3.78)

We also define a quantity, called enstrophy, as ψ= 〈
(u −U )2

〉
/h2. The enstrophy

takes into account shear effects. It is zero for a velocity constant in the depth and
positive otherwise. The enstrophy is scaled as ψ = ψ̃u2

0/h2
0. With this definition,

h̃
〈

ũ2
〉= h̃Ũ 2 + h̃3ψ̃. Similarly, ψ̃ expands as ψ̃= ψ̃(0) +εψ̃(1) +O(ε2), where

ψ̃(0) = Ã2h̃

25
(3.79)

is the consistent expression of the enstrophy for a Bagnold profile, and

ψ̃(1) = Ã2B

25

∂h̃

∂x̃

[
6F 2 Ã2

11cosθ
h̃3 +

(
13

7
C −2

)
h̃

]
. (3.80)

At leading order, the enstrophy and the depth-averaged velocity satisfy the relation

ψ̃(0) = (Ũ (0))2

4h̃2
. (3.81)

Note that this expression gives at leading order h〈(u(0))2〉 = (5/4)h(U (0))2. This is
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consistent with the shape factor 5/4 which is obtained for a Bagnold velocity profile.
This value was confirmed by the experimental measurements of Saingier et al. 2016.
However, using the additional quantity enstrophy and a three-equation model instead
of a shape factor and a two-equation model modifies and improves the mathematical
structure of the model. In particular, a three-equation model admits an energy balance
equation, which is not the case for a two-equation model with a shape factor different
from 1 (Richard and Gavrilyuk 2012, Appendix A).

The relation (3.81) leads to the expansion

ψ̃− Ũ 2

4h̃2
= ε

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
+O(ε2). (3.82)

The leading term of (3.82) can be computed with Equations (3.80) and (3.78). We
obtain

ψ̃(1) − ÃŨ (1)

5h̃1/2
= Ã2B

10

∂h̃

∂x̃

(
F 2 Ã2

55cosθ
h̃3 + C

7
h̃

)
. (3.83)

This expression is useful to write consistently a relaxation term for the enstrophy.

4.2. Depth-averaged mass and momentum equations
We now want to derive evolution equations for the depth-averaged variables. We first

integrate the divergence free condition (3.30) between 0 and h̃. Using the kinematic
boundary condition (3.34), we obtain the depth-averaged mass conservation equation

∂h̃

∂t̃
+ ∂h̃Ũ

∂x̃
= 0. (3.84)

As in Börzsönyi, Halsey, et al. 2005, using this mass conservation equation with the
zeroth-order expression (3.74) of the average velocity gives the kinematic wave equa-
tion (3.58) to within first-order terms, except for the diffusive term of Börzsönyi,
Halsey, et al. 2005, which is of order 1 in this asymptotic.

In order to derive an equation for Ũ , we integrate (3.31) between 0 and h̃ using
the boundary condition (3.34). This leads to a preliminary expression of the depth-
averaged momentum balance equation

∂h̃Ũ

∂t̃
+ ∂

∂x̃

(
h̃Ũ 2 + h̃3ψ̃+ 1

φF 2

∫ h̃

0
p̃dz̃

)
= 1

εφF 2

(
φsinθh̃ − τ̃xz(0)

)+O(ε). (3.85)

We first compute the integral of the pressure p̃. By using the expression (3.42) of p̃(0),
we obtain ∫ h̃

0
p̃dz̃ =

∫ h̃

0
p̃(0)dz̃ +O(ε) = φh̃2 cosθ

2
+O(ε). (3.86)
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Equation (3.85) thus yields

∂h̃Ũ

∂t̃
+ ∂

∂x̃

(
h̃Ũ 2 + h̃3ψ̃+ h̃2 cosθ

2F 2

)
= 1

εφF 2

(
φh̃ sinθ− τ̃xz(0)

)+O(ε). (3.87)

We now need to find an expression for the basal friction τ̃xz (0). The basal friction for a
granular flow can be written τ̃xz(0) =µbφh̃ cosθ (Andreotti et al. 2013) where

µb =µ1 + µ2 −µ1

Im
2h̃3/2

√
φcosθ

5d̃FŨ
+1

. (3.88)

This expression is found assuming a Bagnold velocity profile i.e. a steady uniform flow.
In the framework of the asymptotic method, it means that this expression is valid at
order zero. However the velocity profile is modified for variable flows, in particular
due to the effects of the inertial terms. It follows that the first-order correction to this
expression must be calculated in order to derive a first-order consistent model. This
expression can be written

µb =µ1 + µ2 −µ1

Im

I (0)

Ũ (0)

Ũ
+1

(3.89)

which means that µb = µ(I = I (0)Ũ /Ũ (0)) such that µ(0)
b = µ(0). This friction law is

thus consistent at order 0 with the µ(I ) rheology, and it was used in depth-averaged
models (Jop et al. 2005; Forterre 2006; Gray and Edwards 2014). However, whereas
τ̃(0)

xz (0) =µ(0)
b φh̃ cosθ, it is important to stress that this relation is not satisfied at order

1 (i.e. τ̃(1)
xz (0) ̸=µ(1)

b φh̃ cosθ where µb is given by (3.88)), which implies that the basal
friction law (3.88) or (3.89) is not consistent at order 1 with the rheology.

The strategy for obtaining a consistent model is to retain Expression (3.89) by adding
first-order corrective terms, written in the form of a relaxation term or as corrective
factors in the flux terms. In this way, given that the relaxation and flux terms cancel out
by definition at equilibrium, the friction law (3.89) will be found for steady uniform
flows, for which it is valid. The method used to achieve this result is to expand the
expression (3.89) in powers of ε using the expansion of Ũ = Ũ (0) +εŨ (1) +O(ε2). The
expansion of µb =µ(I = I (0)Ũ /Ũ (0)) gives

µb =µ(0) +ε ∂µ
∂I

∣∣∣∣
I (0)

I (0)

Ũ (0)
Ũ (1) +O(ε2) (3.90)

which can be written as

µb =µ(0) +ε Ũ (1)

BŨ (0)
+O(ε2). (3.91)

Using Equations (3.41), (3.42) and (3.60), the shear stress at the bottom can be written

τ̃xz(0) =µ(0)φh̃ cosθ+εφ∂h̃

∂x̃

(
F 2 Ã2

5
h̃3 − h̃ cosθ

)
+O(ε2). (3.92)
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Subtracting µbφh̃ cosθ using (3.91) from τ̃xz(0) leads to the expression of the first-
order correction to the friction law

τ̃xz(0)−µbφh̃ cosθ = εφR cosθ+O(ε2), (3.93)

where

R =−∂h̃

∂x̃

(
F 2 Ã2

20cosθ
h̃3 + 3C

4
h̃

)
. (3.94)

It follows that the difference h̃ sinθ− τ̃xz (0)/φ cannot be written simply h̃ cosθ(tanθ−
µb)+O(ε2). This difference can be written h̃ cosθ(tanθ−µb)−εR cosθ+O(ε2). The dif-
ference h̃ cosθ(tanθ−µb), which is of O(ε) even if ε does not appear in the expression,
is called a relaxation term. It is equal to zero for a steady uniform flow and determines
the properties of these equilibrium flows. For a variable flow, this difference is small
(of O(ε)) and the corrective term in R does not vanish.

Equation (3.87) can then be written

∂h̃Ũ

∂t̃
+ ∂

∂x̃

(
h̃Ũ 2 + h̃3ψ̃+ h̃2 cosθ

2F 2

)
= h̃ cosθ

εF 2

(
tanθ−µb

)−R
cosθ

F 2
+O(ε). (3.95)

In order to derive a model with a satisfactory mathematical structure (i.e. a hyperbolic
model in conservative form with relaxation source terms), we now need to find an
expression for the first-order correction to the friction law, i.e. the term −R cosθ/F 2

with its problematic derivative ∂h/∂x. We choose to split R into two terms. The first
term is written in the left-hand side of Equation (3.95) as a flux, and the second term
is written in the right-hand side and is expressed as a relaxation term. More precisely,
for any λ≥ 0, we can write consistently, using Equation (3.83)

− cosθ

F 2
R =C

(
3

4
− λ

7

)
∂

∂x̃

(
h̃2 cosθ

2F 2

)
+

(
5

16
− 5λ

44

)
∂

∂x̃

(
h̃3ψ̃(0))

+λ10cosθ

F 2 Ã2B

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
. (3.96)

The parameter λ can be freely chosen with no loss of consistency. There is thus an
infinite number of consistent models, which are all equivalent in the validity domain
of the asymptotic expansion, i.e. in the shallow-water approximation, but which differ
outside this domain. The final choice (3.134) of the expression of λ is explained in
§5.3 with validations in §5.4.

We can now substitute this expression of R into Equation (3.95). We obtain

∂h̃Ũ

∂t̃
+ ∂

∂x̃

(
h̃Ũ 2 +βh̃3ψ̃+K

h̃2 cosθ

2F 2

)
= cosθ

εF 2

[
h̃(tanθ−µb)+ 10λ

Ã2B

(
ψ̃− Ũ 2

4h̃2

)]
+O(ε),

(3.97)
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where

β= 11

16
+ 5λ

44
, and K = 1− 3C

4
+ λC

7
. (3.98)

Equation (3.97) is consistent at the first order of accuracy. The first-order correction to
the usual granular friction law is written partly as a relaxation term in the right-hand
side and partly in the momentum flux as corrections to the hydrostatic pressure term
(K ) and to the enstrophy term (β). The latter term also models shearing effects in the
granular flow. The structure of this equation is similar to other models with enstrophy
(Denisenko, Richard, et al. 2023 for example) with an effective enstrophy equal to βψ.
There is also a factor K in the hydrostatic pressure term.

4.3. Depth-averaged energy equation
In order to close the system of equations obtained for h̃ and Ũ in the previous

section, we need to find an evolution equation for the variable ψ̃. Such an equation
can be obtained from the equation of energy (3.33). We first rewrite equation (3.33) as:

1

2

∂ũ2

∂t̃
+div

[(
ũ2

2
− x̃ sinθ

εF 2
+ φz̃ cosθ+ p̃

φF 2

)
ṽ
]
= 1

εφF 2
ũ
∂τ̃xz

∂z̃
+O(ε). (3.99)

The integration of Equation (3.99) between 0 and h̃, using the boundary conditions
(3.34) and (3.35b) and the incompressibility condition (3.30), gives

∂

∂t̃

(∫ h̃

0

ũ2

2
dz̃ + h̃2

2F 2
cosθ

)
+ ∂

∂x̃

∫ h̃

0

(
ũ3

2
+ ũ(p̃ +φz̃ cosθ)

φF 2

)
dz̃ − h̃Ũ

εF 2
sinθ

= 1

εφF 2

∫ h̃

0
ũ
∂τ̃xz

∂z̃
dz̃ +O(ε). (3.100)

As in the previous section, we have h
〈

u2
〉 = hU 2 +h3ψ. Similarly, h

〈
u3

〉
can be

written as h
〈

u3
〉 = hU 3 +3Uh3ψ+h

〈
(u −U )3

〉
. In order to close the equations, we

need a formula for the third-order correlation
〈

(u −U )3
〉

. Since we neglect second-
order terms, it is consistent to replace this term by the leading term in the asymptotic

expansion, which is h
〈

(u −U )3
〉(0) =−4Ã3h̃11/2/1375. Hence

∂

∂x̃

∫ h̃

0

1

2

(
ũ(0) −Ũ (0))3

dz̃ =− Ã3h̃9/2

125

∂h̃

∂x̃
. (3.101)

This term is written in the right-hand side of the equation in order to obtain a model
with a well-posed and simple mathematical structure. Equation (3.42) shows that, at
order 0, we can write

p̃(0) +φz̃ cosθ =φh̃ cosθ. (3.102)
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We can use this relation to write∫ h̃

0

ũ(p̃ + z̃ cosθ)

φF 2
dz̃ = h̃2Ũ cosθ

F 2
+O(ε). (3.103)

The technical details of the treatment of the right-hand side of Equation (3.100) are
given in Appendix 8.1. The calculations are carried out to ensure compatibility be-
tween the energy and momentum depth-averaged equations in order to obtain a
well-posed mathematical structure well suited to numerical resolution.

The final version of the energy equation can be written

∂

∂t̃

(
h̃

Ũ 2

2
+ βh̃3ψ̃

2
+K

h̃2 cosθ

2F 2

)
+ ∂

∂x̃

(
h̃Ũ 3

2
+ 3βh̃3Ũψ̃

2
+K

h̃2Ũ cosθ

F 2

)
= Ũ cosθ

εF 2

[
h̃(tanθ−µb)+ βα̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+

(
βα̃2 + 10λ

Ã2B

)(
ψ̃− Ũ 2

4h̃2

)]
+O(ε)

(3.104)

with

α̃1 =− 33C

2ÃB(34C +28)
, (3.105)

and

α̃2 = 77(9C −12)

2Ã2B(34C +28)
. (3.106)

As in the momentum equation, the effective enstrophy in this energy equation is βψ
and there is the same factor K in the pressure term and in the potential energy. The
right-hand side of this energy equation includes the power of the weight and of the
usual granular friction law (3.88) but there are additional relaxation terms to obtain
consistency at order 1.

The evolution equation for the variable ψ̃ can now be derived. In order to do this, the
equation of momentum (3.97) is multiplied by Ũ and this new equation is subtracted
from the equation of energy (3.104). This leads to

∂h̃ψ̃

∂t̃
+ ∂h̃Ũψ̃

∂x̃
= 2Ũ cosθ

εh̃2F 2

[
α̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+ α̃2

(
ψ̃− Ũ 2

4h̃2

)]
+O(ε). (3.107)

The evolution equation of the enstrophy is a transport equation with relaxation source
terms. The relaxation term onψ is important and usual for an enstrophy equation and
the coefficient α̃2 must be negative for the system to be mathematically well-posed
(otherwise the enstrophy diverges exponentially). This gives the condition C < 4/3,
which is discussed below in §6. For a slope in the range [µ1,µ2], this condition is
automatically satisfied if µ2 <

p
2/3 ≃ 0.816 ≃ tan(39.2◦) (see §6).
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5. Properties and extensions of the model

5.1. Reconstruction of the velocity field
Since the model is derived consistently from the asymptotic expansions of the flow

variables, it is possible to reconstruct the 2D-fields and, in particular, the variations of
the velocity in the depth, from the values of the depth-averaged quantities calculated
with the 1D-depth-averaged model. These velocity profiles are calculated at the same
accuracy as the model. In the following, we show how to reconstruct in a consistent
way the horizontal velocity field from the solution of (3.116), i.e. from the triplet
(h,U ,ψ).

Reverting to the dimensionless quantities, the expressions of ũ(0) at equilibrium
(3.48) and of the averaged velocity Ũ (0) (3.74) lead to

ũ(0) = f (z)Ũ (0), (3.108)

where

f (z) = 5

3

[
1−

(
1− z

h

)3/2
]

(3.109)

is the renormalised Bagnold profile. From this relation, we deduce that an approxima-
tion of ũ at order 0 is given by ũ = f (z)Ũ +O(ε). In order to have an approximation of
order 1, we expand

ũ = f (z)Ũ +ε(
ũ(1) − f (z)Ũ (1))+O(ε2). (3.110)

Thus we can obtain a consistent expression for ũ by expressing consistently ũ(1) −
f (z)Ũ (1) as a function of (h̃,Ũ ,ψ̃). After using (3.71) and (3.78) and some computa-
tions, we obtain

ũ(1) − f (z)Ũ (1) = ÃB
∂h̃

∂x̃

[
F 2 Ã2

25cosθ
h̃7/2 f (z)

(
2

5
f (z)− 1

2

)
+C h̃3/2

(
z̃

h̃
− 1

2
f (z)

)]
, (3.111)

which yields, using (3.78) and (3.83),

ũ(1) − f (z)Ũ (1) = f1(z)Ũ (1) + f2(z)

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
, (3.112)

where

f1(z) = 2C

34C +28

[
2 f (z)

(
11

5
f (z)+6

)
−35

z

h

]
(3.113)

and

f2(z) = 55h̃1/2

A(17C /7+2)

[
5C

(
z

h
− 1

2
f (z)

)
− 1

5
(3C −4) f (z)

(
2

5
f (z)− 1

2

)]
. (3.114)

As we did before, we finally use (3.76) and (3.82) to replace the terms of first order in
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the right-hand side of (3.112) and, together with (3.110), we obtain, reverting to the
dimensional quantities,

u = f (z)U + f1(z)

(
U − 2A

5
h3/2

)
+ f2(z)

(
ψ− U 2

4h2

)
. (3.115)

This expression gives the velocity profile in the flow to the accuracy of the model, i.e.
to within terms of order 2.

5.2. Hyperbolicity
In this section, we study some properties of the model obtained in Section 4 and

formed by the mass conservation equation (3.84), the momentum balance equation
(3.97) and the enstrophy equation (3.107). In dimensional form, this system reads

∂h

∂t
+ ∂hU

∂x
= 0,

∂hU

∂t
+ ∂

∂x

(
hU 2 +βh3ψ+K

g h2

2
cosθ

)
= g cosθ

[
h

(
tanθ−µb

)+ 10λ

A2B

(
ψ− U 2

4h2

)]
,

∂hψ

∂t
+ ∂hUψ

∂x
= 2gU cosθ

h2

[
α1

h1/2

(
U − 2

5
Ah3/2

)
+α2

(
ψ− U 2

4h2

)]
,

(3.116)
where the expressions of A, B , C , α1 and α2 are

A = Im
tanθ−µ1

µ2 − tanθ

√
φg cosθ

d
, B = µ2 −µ1

(µ2 − tanθ)(tanθ−µ1)
, C = tanθ

(
2tanθ− 1

B

)
,

(3.117)

α1 =− 33C

2AB(34C +28)
, α2 = 77(9C −12)

2A2B(34C +28)
. (3.118)

The parameters λ, β and K are given by

λ= 847(4−3C )

20(157C +84)
, β= 11

16
+ 5λ

44
, K = 1− 3C

4
+ λC

7
, (3.119)

and the basal friction µb is given by

µb =µ1 + µ2 −µ1

Im
2h3/2

√
φg cosθ

5dU
+1

. (3.120)

The three characteristic velocities are

λ0 =U , λ± =U ±
√

K g h cosθ+3βh2ψ. (3.121)

The system of equations (3.116) is hyperbolic if K > 0. It is in conservative form, with
relaxation source terms. For the final expression (3.134) of λ or for λ= 0, the condition
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K > 0 is equivalent to the condition C < 4/3, which is also a condition for a well-posed
system (see above in §4.3) and which is discussed in §6. If K < 0, the hyperbolicity is
not guaranteed, which is not admissible.

The system admits the additional energy balance equation

∂he

∂t
+ ∂

∂x
(hU e +ΠU )

= gU cosθ

[
h(tanθ−µb)+ βα1

h1/2

(
U − 2

5
Ah3/2

)
+

(
βα2 + 10λ

A2B

)(
ψ− U 2

4h2

)]
(3.122)

where the specific energy is

e = U 2

2
+ βh2ψ

2
+K

g h

2
cosθ (3.123)

and

Π=βh3ψ+K
g h2

2
cosθ. (3.124)

The discontinuities that propagate at speed λ0 are called contact discontinuities,
while the two other are shocks (discontinuities). Across a shock propagating at a
celerity a, the quantities m = h(U −a) (conservation of mass) and ψ (conservation of
enstrophy) are continuous. Furthermore, the jump of height h is constrained by the
shock relation

m2
[

1

h

]
+βψ[

h3]+ K g cosθ

2

[
h2]= 0, (3.125)

where the notation [ f ] stands for the jump of the quantity f .
It is important to note that the third equation of the system is the enstrophy equation

and not the energy equation. This implies that, through a discontinuity, the enstrophy
is conserved and the energy is dissipated. In the framework of hyperbolic systems of
conservation laws, the energy is the mathematical entropy of the system.

5.3. Linear stability
We study here the linear stability of a steady uniform solution of (3.116). In other

words, we suppose that the solutions are sinusoidal perturbations of the constant
solution given by h̃ = 1, Ũ = Ũ (0) (see (3.74)) and ψ̃ = ψ̃(0). The depth-averaged
velocity can be scaled with its value in the constant solution, which yields Ã = 5/2,
Ũ (0) = 1 and ψ̃(0) = 1/4. We thus write h̃ = 1+h′, Ũ = 1+U ′, ψ̃ = 1/4+ψ′, where
(h′,U ′,ψ′) = (a1, a2, a3)exp

[
i k(x̃ − c t̃ )

]
. The amplitudes a1, a2, a3 are three constants,

as well as the wave number k and the phase velocity c. We obtain the following
linearised system:

M(ε)
(
h′,U ′,ψ′)T = 0, with M(ε) = cosθ

F 2
R + iεkL (3.126)
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where the matrix L comes from the conservative terms of the left-hand side of the
equations, and is given by

L =

 1− c 1 0
3β
4 + K cosθ

F 2 1− c β

0 0 1− c

 , (3.127)

and the matrix R comes from the right-hand side relaxation terms and is given by

R =
 0 0 0
− 3

2B − 4λ
5B

1
B + 4λ

5B − 8λ
5B

3α̃1 − α̃2 −2α̃1 + α̃2 −2α̃2

 . (3.128)

The dispersion relation is then obtained by imposing the condition det(M(ε)) = 0.
In order to obtain an analytical stability threshold in the limit εk ≪ 1, we expand
c = c(0) +εc(1) +O(ε2), which leads to L = L(0) +εL(1) +O(ε2). We then obtain a similar
expansion for the determinant of M(ε), that we will denote det(M(ε)) = δ(0) +εδ(1) +
ε2δ(2) +O(ε3). We compute for the order 0 that δ(0) = det(cosθR/F 2) = 0. For the first
order in ε, we find, after calculations,

δ(1) = i k
2cos2θ

BF 4

(
c(0) − 5

2

)(
α̃2 + 8λ

5
α̃1

)
. (3.129)

Hence the condition δ(1) = 0 yields c(0) = 5/2. The matrix L(0) can thus be rewritten

L(0) =

 −3
2 1 0

3β
4 + K cosθ

F 2 −3
2 β

0 0 −3
2

 . (3.130)

For the order 2 in ε, we obtain

δ(2) =
[

2i k cos2θ

BF 4
c(1) − k2 cosθ

2F 2

(
−25

4
+ (4−3C )cosθ

F 2

)](
α̃2 + 8λα̃1

5

)
. (3.131)

Solving δ(2) = 0 then yields

c(1) = i
kB

4cosθ

(
25

4
F 2 − (4−3C )cosθ

)
. (3.132)

The condition of stability is Im(c(1)) < 0, which gives 25F 2/4 < (4−3C )cosθ. A consis-
tent expression of the stability criterion for the µ(I ) rheology was obtained by Forterre
2006, using a slightly different Froude number F , defined as F 2 = F 2/cosθ. With this
definition of the Froude number, the obtained stability criterion is exactly the same as
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found by Forterre 2006 and it reads

F <Fc = 4

5

√
1− 3C

4
= 4

5

√
1− 3

2
tan2θ+ 3

4

(µ2 − tanθ)(tanθ−µ1)

µ2 −µ1
tanθ. (3.133)

The stability criteria are identical because the present depth-averaged model is con-
sistent up to order 1 in ε with the µ(I ) rheology.

Note that the critical Froude number Fc is real if the condition C < 4/3 is satisfied.
This condition is also a condition for a well-posed enstrophy equation (see §4.3 above)
and to guarantee the hyperbolicity of the system (see §5.2). Since this condition
appears in the stability criterion of a steady uniform flow for the µ(I ) rheology, it is
not specific to the model derived in this work. This condition is discussed in §6.

The variation of the consistent critical Froude number (present model and Forterre
2006) as a function of the inclination is presented in Figure 3.2 (red curve) in the case
of glass beads, using the values µ1 = tan20.9◦ and µ2 = tan32.76◦ (Jop et al. 2005),
together with the experimental measurements of Forterre and Pouliquen 2003 (black
dots). The stability criterion obtained with the two-equation models with or without
diffusion (e.g.Forterre and Pouliquen 2003; Gray and Edwards 2014) is also shown, with
a shape factor of 1 (velocity constant over the depth) (black line), or with a shape factor
of 5/4 (Bagnold velocity profile) (blue line). These criteria differ from the criterion
obtained with the µ(I ) rheology because these Saint-Venant models, both with a shape
factor of 1 or 5/4, are inconsistent approximations of the governing equations. The
criterion obtained with a constant velocity profile (Fc = 2/3) is paradoxically closer to
the consistent criterion than with a shape factor of 5/4 (Fc = 2/

p
5 ≃ 0.89) because

some first-order terms were neglected in the derivation of the model. The systematic
asymptotic expansions used to derive the present model enables to obtain both a
consistent stability criterion and a Bagnold velocity profile for steady uniform flows
with its correction for flows in a non-equilibrium state (see also the discussion in §5.5).
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Figure 3.2. – Critical Froude number as a function of the angle θ for glass beads. Theo-
retical value obtained with the µ(I ) rheology Forterre 2006 and given by
the present model (red curve). Saint-Venant model with a shape factor of
1 (black line) and of 5/4 (blue line) (Forterre and Pouliquen 2003). Black
dots: experimental measurements of Forterre and Pouliquen 2003.

Using the dispersion relation, it is also possible to express k = k(ω,F ), where ω= ck.
It is then possible to study the neutral stability curve defined by Im(k) = 0 (if ω is real).
Computations (see Appendix 8.2) show that ∂Fc /∂ω|ω=0 = 0 and that ∂2Fc /∂ω2|ω=0 =
f (λ), where λ is the parameter introduced in Section 4.2 and f (λ) is a complicated
function of λ which vanishes when λ has the value

λ= 847(4−3C )

20(157C +84)
. (3.134)

If we use this expression of λ, the expression (3.133) of the critical Froude number
Fc and the expression k = 2ω/5 of the wavenumber, the dispersion relation is auto-
matically satisfied. This implies that, for this value of λ, the neutral stability curve
F = F (ω) is obtained at the fixed value Fc of the Froude number independently of the
frequency ω and that the phase velocity is also independent of the frequency on the
neutral stability curve and equal to 5/2.

The independence of the critical Froude number from the frequency is obtained
with all first-order two-equation hyperbolic models in every rheology if only weight,
friction and fluxes are included (i.e. with no capillarity, diffusion or any other effect
giving higher derivatives). The phase velocity is also independent of the frequency
on the neutral stability curve. The proof is given in Appendix 8.3. The behaviour
of two-equation models is thus straightforward: the variation of the critical Froude
number with frequency is only possible if diffusion is added to the model or other
effects modelled with derivatives of high order such as capillarity (see Ruyer-Quil et al.
2002 for the effect of capillarity in a first-order model in the case of Newtonian fluids).
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The mathematical structure of three-equation models allows a greater variety of
behaviours, even for a first-order model without high-order derivatives. Consistency
therefore does not imply model uniqueness, and modelling choices must be made
which will determine the behaviour of the model outside the validity domain of the
derivation assumptions. The choice is to reproduce with the three-equation model of
first order the independence of the critical Froude number with frequency obtained
with first-order two-equation models. The chosen expression of λ implies also that
the phase velocity is independent of the frequency on the neutral stability curve.

Another interesting feature of the choice (3.134) for λ is that the stability condition
can be found by the same argument as for two-equation models. It was shown by
Whitham 2011 that the stability condition for these models amounts to a condition
on the kinematic wave velocity and the characteristic velocities: the steady uniform
flow is stable if the kinematic wave velocity a0 (whose value is 5/2 in dimensionless
form) is between the two characteristic velocities i.e. λ− < a0 < λ+. This condition
was applied to the case of granular flow models by Forterre and Pouliquen 2003 and
Börzsönyi, Halsey, et al. 2005 in particular. For the three-equation model, the stability
condition cannot be found with this simple argument except if λ has the expression
(3.134). In this particular case, λ− < a0 < λ+, which in practice reduces to a0 < λ+,
gives the condition (3.133).

Moreover, the choice (3.134) is supported by the satisfactory agreement of the spatial
growth rate and phase velocity with the theoretical and experimental results and of
the high-frequency extrapolation of the critical Froude number (see §5.4 and Figures
3.3, 3.4 and 3.5 below). For these reasons, the particular value (3.134) of λ is the final
choice for the model.

5.4. Adding diffusive effects
First-order models such as the present model (3.116) lead to some discrepancies

due to the absence of diffusive terms (Forterre 2006; Andreotti et al. 2013; Gray and
Edwards 2014). The spatial growth rate in particular is not accurate far from the
long-wave limit and the stabilisation of high frequencies is not predicted. Therefore
it is important to add diffusive terms to the model. These effects are of second order
with respect to ε but, since the second-order full consistency is very complicated and,
moreover, does not yield well-posed models, only the linear terms due to the stress
gradient in the stream-wise direction are considered. The integration of (3.31) can be
written

∂h̃Ũ

∂t̃
+ ∂

∂x̃

(
h̃Ũ 2 + h̃3ψ̃

)= 1

εφF 2

(
φsinθh̃ −ε ∂

∂x̃

∫ h̃

0
p̃dz̃ − τ̃xz(0)+ε2

∫ h̃

0

∂τ̃xx

∂x̃
dz̃

)
.

(3.135)
In this equation, only the second-order terms given by the integral of ∂τ̃xx/∂x̃ are
kept.
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Equation (3.52) yields

∂τ̃(0)
xx

∂x̃
=φsinθ

{(
∂h̃

∂x̃

)2 [(
1− z̃

h̃

)1/2

+
(
1− z̃

h̃

)−1/2

−2

]
+2

∂2h̃

∂x̃2

[
h̃1/2(h̃ − z̃)1/2 − h̃ + z̃

]}
,

(3.136)
which leads to ∫ h̃

0

∂τ̃(0)
xx

∂x̃
dz̃ = 1

3
φsinθ

∂

∂x̃

(
h̃2∂h̃

∂x̃

)
. (3.137)

Using the expression (3.74) of Ũ (0), this term can be written as a diffusive term∫ h̃

0

∂τ̃(0)
xx

∂x̃
dz̃ =φF 2 ∂

∂x̃

(
ν̃effh̃

∂Ũ (0)

∂x̃

)
, (3.138)

with an effective viscosity

ν̃eff =
5sinθ

9ÃF 2
h̃1/2. (3.139)

Defining α̃ν by ν̃eff = α̃νh̃1/2, we can write the depth-averaged momentum balance
equation

∂h̃Ũ

∂t̃
+ ∂

∂x̃

(
h̃Ũ 2 +βh̃3ψ̃+K

cosθh̃2

2F 2

)
= cosθ

εF 2

[
h̃(tanθ−µb)+ 10λ

Ã2B

(
ψ̃− Ũ 2

4h̃2

)]
+ε ∂

∂x̃

(
α̃νh̃3/2∂Ũ

∂x̃

)
. (3.140)

The dimensionless effective viscosity obtained in Gray and Edwards 2014 is similar,
apart from a coefficient 1/F 2 which comes from a different scaling. The expression of
the effective viscosity in Forterre 2006 is different but it is consistent at order 0 with
(3.139).

We now need to take the diffusion into account in the energy equation. Technical
details are given in Appendix 8.4. Since we consider only linear terms, there is some
freedom of choice for non-linear terms that inevitably appear either in the enstrophy
equation or in the energy equation or both. As for the first-order hyperbolic model, we
impose conservation of enstrophy and dissipation of energy. Therefore, the enstrophy
equation is written without non-linear terms, which implies dissipative non-linear
terms in the energy equation. The enstrophy balance equation is thus written

∂h̃ψ̃

∂t̃
+ ∂h̃Ũψ̃

∂x̃
= 2Ũ cosθ

εh̃2F 2

[
α̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+ α̃2

(
ψ̃− Ũ 2

4h̃2

)]
+ε ∂

∂x̃

(
16α̃ν

7β
h̃3/2∂ψ̃

∂x̃

)
.

(3.141)
The new depth-averaged energy balance equation is now found from the three equa-

162



3. Modèle consistant d’écoulement granulaire incompressible – 5. Properties and
extensions of the model

tions of the system and can be written

∂

∂t̃

(
h̃

Ũ 2

2
+ βh̃3ψ̃

2
+K

h̃2 cosθ

2F 2

)
+ ∂

∂x̃

(
h̃Ũ 3

2
+ 3βh̃3Ũψ̃

2
+K

h̃2Ũ cosθ

F 2

)
= Ũ cosθ

εF 2

[
h̃(tanθ−µb)+ βα̃1

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+

(
βα̃2 + 10λ

Ã2B

)(
ψ̃− Ũ 2

4h̃2

)]
+ε ∂

∂x̃

(
α̃νh̃3/2Ũ

∂Ũ

∂x̃

)
+ε ∂

∂x̃

(
8α̃ν
7β

h̃7/2∂ψ̃

∂x̃

)
−εα̃νh̃3/2

(
∂Ũ

∂x̃

)2

−ε16α̃ν
7β

h̃5/2∂h̃

∂x̃

∂ψ̃

∂x̃
.

(3.142)

Reverting to the dimensional quantities, the system can be written

∂h

∂t
+ ∂hU

∂x
= 0, (3.143)

∂hU

∂t
+ ∂

∂x

(
hU 2 +Π)= g cosθ

[
h

(
tanθ−µb

)+ 10λ

A2B

(
ψ− U 2

4h2

)]
+ ∂

∂x

(
ανh3/2∂U

∂x

)
,

(3.144)
∂hψ

∂t
+ ∂hUψ

∂x
= 2gU cosθ

h2

[
α1

h1/2

(
U − 2

5
Ah3/2

)
+α2

(
ψ− U 2

4h2

)]
+ ∂

∂x

(
16αν

7β
h3/2∂ψ

∂x

)
,

(3.145)
with the expressions of A and B given in (3.117), of α1 and α2 in (3.118), of λ and K in
(3.119), of the basal friction µb in (3.120), with

αν = 5g sinθ

9A
(3.146)

and with

Π=βh3ψ+K
g h2

2
cosθ. (3.147)

The system admits the energy balance equation

∂he

∂t
+ ∂

∂x
(hU e +ΠU )

= gU cosθ

[
h(tanθ−µb)+ βα1

h1/2

(
U − 2

5
Ah3/2

)
+

(
βα2 + 10λ

A2B

)(
ψ− U 2

4h2

)]
+ ∂

∂x

(
ανh3/2U

∂U

∂x

)
+ ∂

∂x

(
8αν
7β

h7/2∂ψ

∂x

)
−ανh3/2

(
∂U

∂x

)2

− 16αν
7β

h5/2∂h

∂x

∂ψ

∂x
(3.148)

with the specific energy e given by (3.123).
The dispersion relation is modified by the diffusive terms. Taking again sinusoidal

perturbations of the form h̃ = 1+h′, Ũ = Ũ (0) +U ′ and ψ̃ = ψ̃(0) +ψ′, the linearized
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system now reads

MV (ε)

h′

U ′

ψ′

= 0, with MV (ε) = cosθ

F 2
R + iεkL+ε2k2α̃νV , (3.149)

where R, L are defined in (3.128), (3.127) and V is the matrix of the linearized viscous
terms, given by

V =

0 0 0
0 1 0
0 0 16

7β

 . (3.150)

The new dispersion relation is det(MV ) = 0. We now suppose that ω= ck ∈R and that
k is complex. The spatial growth rate is then given by σ=−Im(k). The system is stable
if and only if σ< 0.

Figure 3.3. – Spatial dimensionless growth rate for θ = 29◦ and F = 1.02 as a function
of the dimensionless frequency. Black dots: experimental measurements
of Forterre and Pouliquen 2003. Red solid curve: present model with diffu-
sion. Black curve : theoretical result for the µ(I ) rheology (Forterre 2006).
Two-equation model without diffusion (e.g. Forterre and Pouliquen 2003)
with a shape factor α= 1 (green dashed curve) and α= 5/4 (blue dashed
curve) and with diffusion (Gray and Edwards 2014) with a shape factor
α= 1 (green solid curve) and α= 5/4 (blue solid curve).

The variations of the dimensionless spatial growth rate σ with the dimensionless
angular frequency is presented in Figure 3.3 for the present model with diffusion (red
curve) and λ given by (3.134), in the case of glass beads (µ1 = tan20.9◦, µ2 = tan32.76◦,
Jop et al. 2005) and for θ = 29◦ and F = 1.02. The results are compared with the
theoretical results obtained for the µ(I ) rheology by Forterre 2006 (black curve) and
with the experimental measurements of Forterre 2006 (black dots). The two-equation
models without diffusion derived with a constant velocity profile (green dashed curve)
and with a Bagnold profile (blue dashed curve) are also presented together with the
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model with diffusion (Gray and Edwards 2014) (green curve if α = 1, blue curve if
α= 5/4).

The curve obtained with the present model with diffusion is very close to the curve
obtained by (Gray and Edwards 2014). Both models predict quite correctly the stabi-
lization of high frequencies, with a cutoff frequency, and are in reasonable agreement
with the experimental measurements and with the theoretical result for the µ(I ) rhe-
ology. By contrast, the Saint-Venant models cannot predict the cutoff frequency due
to the absence of diffusive terms. These Saint-Venant models are also inconsistent
approximations of the governing equations but the inaccuracy is much more impor-
tant for the model with a shape factor of 5/4 (Bagnold profile). The present model is
also based on a Bagnold velocity profile at leading order but it gives accurate results
because of the consistent asymptotic expansions used in its derivation.

The dimensionless phase velocity c is presented in Figure 3.4 (same conditions as
for Figure 3.3). The present model with diffusion and λ given by (3.134) (red curve)
is in good agreement with the theoretical result for the µ(I ) rheology (black curve)
and with the experimental measures (Forterre 2006). The model of Gray and Edwards
2014 with diffusion (green solid curve) gives practically the same result as the model
without diffusion (Forterre and Pouliquen 2003) (green dashed curve), and agrees
with the theoretical and experimental results if a flat velocity profile is considered, i.e.
α= 1, while the models with a Bagnold profile (α= 5/4), with (blue solid curve) ou
without (blue dashed curve) diffusion, give values clearly too large. In this case again,
the consistent derivation used for the present model improves the accuracy of the
predictions when a Bagnold velocity profile is considered for steady uniform flows.
The value of the dimensionless phase velocity for ω= 0 is the celerity Ãh̃3/2 = 5/2 of
the kinematic waves while the phase velocity for ω→∞ is the characteristic velocity
λ+, whose value is 1+√

K /F 2 +3β/4 = 2.07 for the present model if λ is given by
(3.134), and 1+1/F = 1.98 for the two-equation models with α = 1. The difference
between these two high-frequency limit values is due to the Bagnold profile taken into
account by the enstrophy, whose equilibrium value is 1/4 if the equilibrium velocity
is 1, and to the consistency factors K and β, which depend on the choice of λ. The
critical expression (3.134) of λ gives results in good agreement with the experimental
and theoretical results both for the spatial growth rate and the phase velocity.
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Figure 3.4. – Dimensionless phase velocity for θ = 29◦ and F = 1.02 as a function of
the dimensionless frequency. Black dots: experimental measurements of
Forterre and Pouliquen 2003. Red solid curve: present model with diffu-
sion. Black curve : theoretical result for the µ(I ) rheology (Forterre 2006).
Two-equation model without diffusion (e.g. Forterre and Pouliquen 2003)
with a shape factor α= 1 (green dashed curve) and α= 5/4 (blue dashed
curve) and with diffusion (Gray and Edwards 2014) with a shape factor
α= 1 (green solid curve) and α= 5/4 (blue solid curve).

The variations of the dimensionless cutoff angular frequency ωc as a function of the
Froude number above criticality F −Fc is presented in Figure 3.5 for glass beads and
θ = 29◦. As pointed out above, there is no uniqueness of a first-order consistent model.
The value of the parameter λ is a modelling choice. The choice that has been made,
detailed above at the end of §5.3, is to have a critical Froude number independent
of frequency for the model without diffusion. This choice leads to the critical value
(3.134).

Other special values of λ include λ = 0 and λ = 11/4. In the case λ = 0, there is
no relaxation term for the enstrophy in the momentum balance equation and the
first-order correction to the granular friction law is entirely written as terms in the
momentum flux. In the case λ= 11/4, we have β= 1, which means that there is no
correction on the shear term h3ψ in the momentum flux although, since K < 1, there
is still a correction on the pressure term of the momentum flux (the value of λ needed
to have K = 1 is 21/4, so even higher). In the final choice (3.134), part of the first-order
correction is written in the momentum flux, with a correction on both the enstrophy
and pressure terms, and another part as a relaxation term.

The effect of the parameter λ is shown with the model with diffusion in these three
cases: λ is equal to the critical value (3.134) (red solid curve), λ= 0 (blue curve) and
λ= 11/4 (green curve). Since all these values of λ give a consistent model, they lead to
the same result in the validity domain of the shallow-water approximation, thus for
small frequencies, but this domain is quite small (ω̃< 0.1 approximately). For larger
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frequencies, the cutoff frequency is sensitive to the choice of λ. For the critical value
of λ (3.134), the agreement of the model with diffusion with the theoretical result for
the µ(I ) rheology (black curve) and with the experimental results (black dots), both
obtained by Forterre 2006, is quite good. For smaller values of λ, and in particular for
λ= 0, there are unstable frequencies that are smaller than the cutoff at the long-wave
limit, which does not seem to be observed experimentally. For larger values of λ, the
cutoff frequency is too small. The diffusion is again important to stabilize the high
frequencies. Only the case θ = 29◦ is presented, but other values of θ studied by Gray
and Edwards 2014 and Forterre 2006 show the same trends.

Figure 3.5. – Dimensionless cutoff frequency ωc of the instability as a function of
the Froude number above criticality F −Fc for θ = 29◦. Black dots:
experimental measurements of Forterre and Pouliquen 2003. Present
model with diffusion for λ given by (3.134) (red solid curve), λ= 0 (blue
curve) and λ = 11/4 (green curve). Red dashed curve: present model
without diffusion for λ given by (3.134). Black curve: theoretical result for
the µ(I ) rheology (Forterre 2006).

5.5. Comparisons with the model of Gray and Edwards 2014
The model of Gray and Edwards 2014 with diffusion was used for many applications

(see §1). It is therefore important to compare the model derived in this article with
this model, highlighting the differences and similarities between these two models.

The model of Gray and Edwards 2014 was proposed with a shape factor α in the
momentum flux, defined by 〈u2〉 =α〈u〉2. Two values of α were considered: The value
α= 5/4 corresponds to a Bagnold velocity profile while the value α= 1 corresponds to
a constant velocity in the depth. Although this difference in the value of alpha seems
minor, it induces a significant change in mathematical structure and behaviour, to the
extent that these two values correspond to two different models. In most applications,
α= 1 was the only value used.

Whatever the value of α, the derivation of the model of Gray and Edwards 2014
is inconsistent, in the sense that first-order corrections have been neglected. In
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particular, gravity balances friction at leading order, and their difference is of O(ε). To
achieve the first-order accuracy required for consistent modelling of variable flows,
this difference cannot be neglected and the corresponding first-order correction must
be included in the model. As a result, the instability threshold for steady uniform flows
calculated with the model of Gray and Edwards 2014, as with the model of Pouliquen
and Forterre 2002, differs from the threshold predicted by the µ(I ) rheology calculated
at the long-wave limit by Forterre 2006. By contrast, the present model is first-order
consistent and predicts exactly the same instability threshold as the µ(I ) rheology in
the long-wave limit.

The discrepancy of the instability threshold predicted by the model of Gray and
Edwards 2014, or any other similar two-equation model, can be particularly large if
α= 5/4. It is more reasonable if α= 1. In the case of glass beads down a slope of 29◦,
the measurements of Forterre and Pouliquen 2003 gave a value of the critical Froude
number Fc = 0.54±0.02 at the zero-frequency limit, whereas the µ(I ) rheology and
the present model predict Fc = 0.60, giving a relative deviation of 11%. The models
of Gray and Edwards 2014 and Pouliquen and Forterre 2002 give Fc = 2/3 with α= 1
(relative deviation: 23%) and Fc ≃ 0.89 if α= 5/4 (relative deviation: 65%).

The consistency of the derivation of the present model enables us to reconstruct
the velocity profile in the depth. This profile is a Bagnold profile for a steady uniform
flow, but the reconstruction allows us to calculate the deviations from this profile due
to first-order corrections when the flow is variable. This reconstruction is not possible
with the model of Gray and Edwards 2014, particularly if α= 1, which corresponds to
a constant velocity profile for steady uniform flows. If α= 5/4, the equilibrium profile
is a Bagnold profile, but the corrections for variables flows cannot be calculated. One
of the advantages of introducing the enstrophy variable is that the velocity profile
is not fixed as with a shape factor. With a shape factor of 5/4, the velocity profile is
always a Bagnold profile, even for a variable flow. With the present model, thanks to
the enstrophy variable, the profil is a Bagnold profile for a steady uniform flow but the
model takes into account and calculates the corrections to this profile in the case of a
variable flow.

With the model of Gray and Edwards 2014 with α= 5/4, no energy balance equation
can be obtained (see the general proof in Richard and Gavrilyuk 2012 Appendix A). By
contrast, the model with α= 1 and the present model are well-posed because both
admit an energy balance equation. This is an important feature for physical reasons
but also from a numerical point of view, since the energy conservation is essential
to prove the stability of numerical schemes. The characteristics of the model with
α = 5/4 are also completely different from those of the model with α = 1. They are
also much more complicated. For these reasons, the mathematical structure of the
model of Gray and Edwards 2014 changes radically when the value of the shape factor
increases from 1 to 5/4.

The predictions and the mathematical structure of the model of Gray and Edwards
2014 are paradoxically better if a constant velocity profile is assumed (i.e. ifα= 1) than
if a Bagnold profile is taken into account (α= 5/4). This paradox, noted by Forterre and
Pouliquen 2003, is resolved by the present model, which obtains both accurate results
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and a Bagnold profile at equilibrium, thanks to the consistency of its derivation. Since
it is hyperbolic (disregarding the diffusive terms), in conservative form, and with an
exact energy conservation equation, the present model has also a good mathematical
structure.

The diffusion term is the same in the present model and in the model of Gray and
Edwards 2014. Since this term is of second order, it can be consistently calculated
assuming a Bagnold velocity profile (zero-order solution). In this respect, the present
work confirms the expression already found by Gray and Edwards 2014 for the diffusive
term. It follows that properties depending on the diffusive term, such as the variations
of the spatial growth rate or of the phase velocity with frequency, are equivalent with
this model and the model of Gray and Edwards 2014 withα= 1. With the valueα= 5/4,
the two-equation models, even with diffusion, lead to a large discrepancy in the spatial
growth rate and the phase velocity (see Figures 3.3 and 3.4).

Figure 3.6. – Dimensionless cutoff frequency ωc of the instability as a function of the
Froude number F for θ = 29◦. Black dots: experimental measurements
of Forterre and Pouliquen 2003. Present model with diffusion for λ given
by (3.134) (red solid curve).Green curve: model of Gray and Edwards 2014
with α= 1. Black curve: theoretical result for the µ(I ) rheology (Forterre
2006).

The model of Gray and Edwards 2014 with α= 1 and the present model are com-
pared with regard to the variation of the cutoff frequency with the Froude number.
In Figure 3.5, all variants of the model were consistent to the µ(I ) rheology. Varia-
tions in cutoff frequency could be studied as a function of the difference between the
Froude number and its critical value. In this comparison, the critical Froude number
predicted by both models are different. The variation of the cutoff frequency as a
function of the Froude number F is shown in Figure 3.6 with the curve predicted by
the µ(I ) rheology calculated by Forterre 2006 (black), the experimental measurements
of Forterre and Pouliquen 2003 (black dots), the present model (red curve) and the
model of Gray and Edwards 2014 (green curve). The main difference between the
two models is the value of the critical Froude number i.e. the beginning of the curves
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at the limit of a zero frequency. Since the diffusive term is the same in both models,
and the variations in cutoff frequency with Froude number are due to the diffusive
term, both models predict fairly similar variations apart from the starting point of the
curves.

The mathematical structure of the model of Gray and Edwards 2014 with α= 1 is
the structure of the Saint-Venant equations (or nonlinear shallow-water equations)
with an additional diffusive term. The structure of the present model is the structure
of the compressible Euler equation with source terms and additional diffusive terms.
Both structures are well-known and can be solved numerically with classical and
reliable numerical schemes. We do not recommend solving numerically the model
with α= 5/4, as no guarantee can be given regarding the numerical scheme.

5.6. Numerical resolution
In this subsection, we solve numerically the model in order to study the roll waves

instability. The numerical solution is calculated with a Godunov type scheme (HLLC
Riemann solver). We solve system (3.116) in the conservative variables (h,hU ,hψ).
In these variables, the total energy plays the role of a mathematical entropy for the
system. The relaxation source terms are implemented explicitly. The second-order
diffusion terms are approximated by centered finite differences. We use the following
parameters: µ1 = tan(20.9◦), µ2 = tan(32.76◦), Im = 0.279 (see Jop et al. 2006), d =
5×10−4 m, θ = 25◦, φ = 0.6−0.2 I (0) (see (3.45)), g = 9.81 m/s, and h0 = 10−2 m. It
follows that F ≈ 0.806 >Fc ≈ 0.666.

The domain has a length of 100m. The initial conditions are a steady uniform
flow of depth h0, average velocity U0 = 2Ah3/2

0 /5 and enstrophy ψ0 =U 2
0 /(4h2

0). The
boundary condition at the domain entrance is a small sinusoidal perturbation of
the depth h(0, t) = h0[1+α0 sin

(
2π f t

)
]. The relative amplitude and frequency of

the perturbation are α0 = 0.01 and f = 0.316Hz respectively. The inlet values of
the velocity and enstrophy are U (0, t ) = h0U0/h(0, t ) and ψ(0, t ) = (h0U0)2/(4h(0, t )4)
respectively. The results are presented with a cell size of 0.625mm in order to reach
numerical convergence with the diffusive model and a numerical scheme of order 1.

In the beginning, the amplitude of the perturbation increases exponentially. After
some time, the amplitude converges to a maximal value. A steady state is then reached
and the solution becomes periodic. This is illustrated by Figure 3.7 which shows
the height of the flow, for the system (3.116) (purely hyperbolic) and for the system
(3.143)–(3.145) (with diffusion terms). The depth profiles of the two system are similar.
It can be seen that, in presence of diffusion, the amplitude of the waves is slightly
smaller and the propagation is slightly slowed. As expected, the shock is steeper in
the purely hyperbolic model. However, the effects of the diffusive terms seem to have
little overall impact on the global shape of the solution. This is coherent with the fact
that the diffusive terms are of order ε2 in our asymptotic. Figure 3.8 shows the values
taken by the basal friction µb and the enstrophy ψ over a period, once the steady state
is reached. The basal friction decreases when the depth increases, while the enstrophy
increases. If the inlet perturbation is smaller, the length required to reach the steady
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state is longer but the steady-state waves are the same.
Finally, the horizontal velocity profile is reconstructed in Figure 3.9, with the help

of Equation (3.115). The reconstructions are presented for three different values of x.
The black curve is obtained by reconstruction of the velocity at the wave trough. It is
very close to a Bagnold profile (solution at equilibrium). The red curve is obtained by
reconstruction at the wave crest. The blue curve is obtained at an intermediate state.
As the height increases, the profile becomes more and more curved. The first-order
correction with respect to the leading-order velocity profile, which represents the
deviation of the velocity profile from the Bagnold profile, can be visualized by the
difference between a curve (red or blue) and the black curve.

Figure 3.7. – (a) Profile of height for the roll-wave instability. (b) Zoom on the final
periodic waves. In black: System (3.116) (purely hyberbolic). In red:
System (3.143)–(3.145) (system with diffusion).

Figure 3.8. – Profile of µb (a) and of ψ (b) for the roll-wave instability. In black: System
(3.116) (purely hyberbolic). In red: System (3.143)–(3.145) (system with
diffusion).
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Figure 3.9. – Reconstruction of the velocity profile for the numerical simulation of
Section 5.6. In black, profile at the wave trough (just after the shock).
In red, profile at the wave crest. In blue, profile where the height of the
perturbation reaches eighty percent of the maximal height.

6. Limitations of the model
It is essential to regularize the model for certain values of the angle θ because some

quantities of the system (3.143)–(3.145) may change sign or become infinite, resulting
in a ill-posed model.

In order to understand why this can happen, let us recall some facts about the µ(I )
rheology. As mentioned in the first section, this rheology corresponds to a friction law,
for which the friction coefficient is given by

µ(I ) =µ1 + µ2 −µ1

1+ Im/I
. (3.151)

The two parameters µ1 and µ2 are determined experimentally. They characterize the
angles for which steady uniform flows can be observed. These steady uniform flows
only exist when

µ1 < tanθ <µ2. (3.152)

Outside this range, there is no equilibrium and all the formulas that we obtained
previously do not make any sense a priori. We insist on the fact that the model (3.143)–
(3.145) is derived with an asymptotic method, under the hypotheses that θ is constant
and inside this range, so that the flow remains close to the uniform stationary flow.
However, for geophysical applications, the value of the slope may not lie within the
interval [µ1,µ2].
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Recall that the expression of the inertial number I at leading order is

I (0) = Im
tanθ−µ1

µ2 − tanθ
. (3.153)

This expression is only valid when the condition (3.152) is verified and makes no sense
otherwise.

– In the limit tanθ → µ1, we have I (0) → 0. It follows that U (0) and ψ(0) both
converge to 0 and the flow should stop. This is called the liquid/solid transition.
In the right-hand side of the system (3.143)–(3.145), the relaxation coefficients
as well as the diffusion coefficients diverge to +∞, which indicates that U and
ψ should go to zero instantaneously. Given that this is likely to cause problems
for numerical resolution and that the instantaneous stopping of an avalanche is
not physical, these coefficients need to be regularized. In addition, the frictional
hysteresis is not taken into account by the model derivation assumptions.

– In the limit tanθ→µ2, I (0) →+∞. The relaxation and diffusion coefficients go
to zero. This is the liquid/gas transition, after which the flow becomes uniformly
accelerated and enters a kinetic regime in which the volume fraction decreases.
For tanθ >µ2, the effective viscosity becomes negative, requiring regularization.
Beyond this limit, the flow is no longer correctly described either by the µ(I )
rheology or, consequently, by the model, which means that the equations have
to be modified.

– Finally, another singularity of the model can appear when the coefficient µ2 is
large. Indeed, recall that the stability criterion in the long-wave limit is

F 2 <F 2
c = 16

25
(4−3C ), (3.154)

where C = C (θ) is an increasing function of θ which is equal to 2µ2
2 when

tanθ = µ2. If µ2 < p
2/3, the condition C < 4/3 is automatically satisfied for

a slope in the range [µ1,µ2]. If µ2 > p
2/3 ≈ 0.816, there are some values of θ

which verify (3.152) for which every steady flow is unstable, even when F = 0,
because C > 4/3 (which gives F 2

c < 0!). This phenomenon is inherent to the
µ(I ) rheology since the stability criterion is the same for the bulk equations,
as shown by Forterre 2006. In the system (3.143)–(3.145), it is materialised by
the fact that the sign of the relaxation coefficient α2 changes when the critical
Froude number is equal to zero (see §4.3 above), as well as the sign of the coef-
ficient K in front of the hydrostatic pressure and of the potential energy term
in the expression (3.123) of the energy. In particular, the enstrophy ψ grows
exponentially in this case and the system is ill-posed. Furthermore, the hyper-
bolicity of the system is not guaranteed anymore when C > 4/3 (see §5.2). It
is not clear whether this instability effect has a real physical meaning or if it is
only a shortcoming of the rheology. In the literature, the value of µ2 is often
lower than the critical value

p
2/3 (µ2 = tan32.76◦ ≈ 0.643 in the paper of Jop

et al. 2006 for instance). However, the value of µ2 was µ2 = 1 for the experiments
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of Börzsönyi and Ecke 2006. They observed steady flows only under a critical
angle tanθ ≈ 0.85, above which the flow becomes uniformly accelerated. With
their parameters, this corresponds to a value of C (θ) ≈ 1.36, which is close to the
theoretical value C = 4/3 ≈ 1.33 that we obtain for the instability of the model.
Further investigations need to be performed to see whether this is a coincidence
or a successful prediction of the µ(I ) rheology. In any case, this instability also
requires regularization.

We use the term “regularization” here in a very broad sense. By regularization, we
mean a shift in the model towards physical behaviours obeying laws and assump-
tions that can be very different, and not just mathematical procedures. The physical
phenomena that appear outside the model’s domain of validity are complex and not
always well known. How to capture them in the model is also a complex problem that
does not necessarily have a unique solution. A regularized system should be usable
for numerical simulations with any value of the slope. However, the development of
such a regularized model requires an in-depth study of flow stopping, of accelerated
flows and of granular avalanche fronts, which is beyond the scope of this article and
will be the subject of a future work.

In particular, the flow near the head of a granular front does not meet the assump-
tions of a shallow flow. Consequently, the characteristics of such a flow may differ
greatly from a steady uniform flow, with the result that the asymptotic method may be
irrelevant. Saingier et al. 2016 and Lagrée, Saingier, et al. 2017 showed that, while a
Bagnold velocity profile was in good agreement with experimental results, the shape
coefficient tends towards α= 1 near the head of the front. This is the same value as
for a constant velocity in depth. This raises the question of the velocity profile in this
part of the flow. The model used in this work is therefore not yet suitable for treating
granular avalanche fronts and, for this case too, a regularization will be necessary.

The ill-posed nature of the model for liquid/solid or liquid/gas transitions is a
consequence of the limitations of the µ(I ) rheology to these same transitions. The
limitations of the rheology for quasi-static regimes have been highlighted by many
authors (see e.g. GdR MiDi 2004; Andreotti et al. 2013). For these regimes, the simple
assumption of a local rheology is not valid. Large spatial correlation lengths diverging
at the quasi-static limit, as well as mechanical noise, could explain the appearance of
non-local effects. Various non-local laws have been proposed for the rheology (see
e.g.Pouliquen and Forterre 2009; Kamrin and Koval 2012; Kamrin and Henann 2015;
Bouzid et al. 2015; Kamrin 2019; Gaume et al. 2020. The dilute regime at the transition
to the gaseous regime described by the kinetic theory of granular gases is not predicted
by the µ(I ) rheology either. It is therefore not surprising that a model consistent with
the µ(I ) rheology is characterised by the same limitations as the rheology itself.

On the other hand, the limitations of the model are not directly related to the ill-
posed behaviour of theµ(I ) rheology found by Barker, Schaeffer, Bohórquez, et al. 2015
at the high-wavenumber limit. The model is derived at the long-wave limit and has a
mathematical structure similar to the structure of the compressible Euler equations
with source terms and diffusion terms. Even the possible singularity which can arise if
µ2 >

p
2/3 is found at the long-wave limit as in Forterre 2006. The model is always well-
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posed for µ1 < tanθ <µ2 if µ2 <
p

2/3 and for µ1 < tanθ <p
2/3 if µ2 >

p
2/3, which is

a wider range of stability than the range found in Barker, Schaeffer, Bohórquez, et al.
2015. It follows that the depth-averaging process at the long-wave limit eliminates the
ill-posed behaviour at high wavenumbers found by Barker, Schaeffer, Bohórquez, et al.
2015, who noted that “it is therefore possible to push the depth-averaged µ(I ) rheology
somewhat further than the full rheology” and this has allowed to calculate roll waves
“using the depth-averaged theory, without getting into issues of ill-posedness”.

7. Conclusion
In this work, we derive a new depth-averaged model for an incompressible granular

flow described by the µ(I ) rheology. The derivation is made using a consistent asymp-
totic method under the assumption of shallow flows. This method implies that, unlike
the models derived to date for the µ(I ) rheology such as Forterre and Pouliquen 2003
or Gray and Edwards 2014, the model is consistent at the first order, with respect to
the small shallow-flow parameter, with the µ(I ) rheology. In particular, for the first
time, the first-order correction to the classical granular friction law is included in the
model. For steady uniform flows, the model is consistent with a Bagnold velocity
profile, which is found at leading order. Otherwise the model includes the first-order
correction to this profile. This model resolves the paradox of previous models, for
which the inclusion of a Bagnold profile led to a much greater disagreement with
experimental and theoretical results than a constant velocity in the depth. Since the
model is consistent, and in contrast to previous models, it gives the exact stability
criterion of the µ(I ) rheology in the long-wave limit as found by Forterre 2006.

The resulting three-equation model is a hyperbolic system of conservation laws
for the flow depth, the depth-averaged velocity and an additional quantity, called
enstrophy, which takes into account shear effects. This system admits an exact energy
balance equation. The model has the classical structure of the compressible Euler
equations with relaxation source terms, which is well-suited for numerical resolution.
In contrast to the two-equation models with a shape factor of 5/4, this three-equation
structure remains well-posed while taking into account a Bagnold velocity profile for
steady uniform flows.

Thanks to the consistency of the asymptotic method used for the derivation, the
variation in the depth of the velocity can be reconstructed explicitly with the three
variables of the depth-averaged model. The deviations to the Bagnold profile can thus
be calculated for flows which are not steady and uniform, such as granular roll waves.

This hyperbolic model is also extended to include diffusive effects. We confirm the
expression of the effective viscosity obtained by Gray and Edwards 2014, which is
indeed the consistent form resulting from the application of the asymptotic method.
The spatial growth rate and the phase velocity predicted by this extended model is in
good agreement with both the theoretical predictions of the µ(I ) rheology and with
the experimental data of Forterre and Pouliquen 2003. In particular, the extended
model predicts successfully the stabilization of high frequencies and the variation of
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the cutoff frequency with the Froude number.
In this respect, it is important to note that it is possible to derive an infinite number

of consistent models, all of which are equivalent within the validity domain of the
long-wave approximation, but differ outside this domain. Outside the domain of valid-
ity of the shallow-flow assumption, the three-equation structure can produce a greater
variety of behaviours than the two-equation structures. The best variant among the
different possible consistent models was selected to obtain a critical Froude indepen-
dent of the frequency for the model without diffusion, as in the case of non-diffusive
two-equation models. In this variant, the instability threshold can be found by writing
that the kinematic wave velocity lies between the maximum and minimum character-
istic velocities, again as for two-equation models. This choice is also supported by the
high-frequency extrapolation of the model with diffusion regarding the spatial growth
rate, the phase velocity and the critical Froude number.

Numerical simulations of granular roll waves are presented, using classical finite-
volume schemes with an approximate Riemann solver. All depth-averaged quantities
can be calculated and the velocity profiles in the depth can be easily reconstructed.

The asymptotic method used to derive the model assumes that the flow remains
close to the steady uniform flow and therefore that such a steady uniform flow exists.
In the context of the µ(I ) rheology, a steady uniform flow is only possible within a
certain range of the angle of inclination of the bottom with respect to the horizontal.
This range defines the model’s domain of validity. Outside this range, certain model
quantities become infinite or change sign, and the model becomes mathematically
ill-posed. This problem is related to the solid/liquid and liquid/gas transitions, which
are well-known limits of the µ(I ) rheology. A regularization of the model and different
physical assumptions are therefore necessary for these transitions, based on the study
of flow stopping, accelerated flows and avalanche fronts, which are not described by
the µ(I ) rheology. It will be the subject of a future work.

The model has been derived under the assumption of incompressible flows, but
dilatancy phenomena can be significant in practice. A further development of this
work will be to take into account variations in volume fraction with the inertial number
according to the phenomenological expressions of the local rheology proposed in the
literature. A further development will concern granular flows on smooth bottoms, for
which a non-zero slip velocity on the bottom is possible and can play an important
role, in particular for granular jumps.

176



3. Modèle consistant d’écoulement granulaire incompressible – 8. Appendix

8. Appendix

8.1. Derivation of the depth-averaged energy equation
We compute the right-hand-side of (3.100). In order to do this, we use the expansion

(3.90) to keep track of the friction law (3.88). We first compute

∂τ̃xz

∂z̃
= ∂

∂z̃

(
τ̃(0)

xz +ετ̃(1)
xz

)+O(ε2) =−µ(0)φcosθ+ε∂τ̃
(1)
xz

∂z̃
+O(ε2)

=−µbφcosθ+εφcosθ
Ũ (1)

BŨ (0)
+ε∂τ̃

(1)
xz

∂z̃
+O(ε2), (3.155)

where the last equality comes from (3.90). We obtain with (3.48) and (3.60)∫ h̃

0
ũ
∂τ̃xz

∂z̃
dz̃ =

∫ h̃

0
ũφcosθ

(
−µb +ε

Ũ (1)

B ˜U (0)

)
dz̃ +ε

∫ h̃

0
ũ(0)∂τ̃

(1)
xz

∂z̃
dz̃ +O(ε2)

=φh̃ cosθ

[
−Ũµb +ε

Ũ (1)

B
+εÃ

∂h̃

∂x̃

(
2

5
h̃3/2 − F 2 Ã2h̃7/2

10cosθ

)]
+O(ε2).

(3.156)

We compute

Ũ (1)

B
+ Ã

∂h̃

∂x̃

(
2

5
h̃3/2 − F 2 Ã2

10cosθ
h̃7/2

)
= Ã

∂h̃

∂x̃

3C

10
h̃3/2 (3.157)

We thus obtain the following equation for the energy:

∂

∂t̃

(
h̃

Ũ 2

2
+ h̃3ψ̃

2
+ h̃2 cosθ

2F 2

)
+ ∂

∂x̃

(
h̃Ũ 3

2
+ 3

2
h̃3Ũψ̃+ h̃2Ũ

F 2
cosθ

)
= h̃Ũ cosθ

εF 2

(
tanθ−µb

)+ Ã3h̃9/2

125

∂h̃

∂x̃
+ 3

10
ÃC h̃5/2 cosθ

F 2

∂h̃

∂x̃
+O(ε). (3.158)

To ensure compatibility between the energy equation and the momentum equation,
we need to modify the left-hand side of (3.158). We compute with (3.74), (3.79) and
(3.84)

1

2

∂h̃3ψ̃

∂t̃
+ 3

2

∂h̃3Ũψ̃

∂x̃
= 13

250
Ã3h̃9/2∂h̃

∂x̃
+O(ε). (3.159)

Similarly,

C

(
3

4
− λ

7

)(
∂

∂t̃

h̃2 cosθ

2F 2
+ ∂

∂x̃

h̃2Ũ cosθ

F 2

)
= 2C

5

(
3

4
− λ

7

)
Ãh̃5/2 cosθ

F 2

∂h̃

∂x̃
+O(ε). (3.160)
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We now subtract Equations (1−β)(3.159) + (3.160) from (3.158) to obtain

∂

∂t̃

(
h̃

Ũ 2

2
+ βh̃3ψ̃

2
+K

h̃2 cosθ

2F 2

)
+ ∂

∂x̃

(
h̃Ũ 3

2
+ 3βh̃3Ũψ̃

2
+K

h̃2Ũ cosθ

F 2

)
= h̃Ũ cosθ

εF 2

(
tanθ−µb

)+ 13β−11

250
Ã3h̃9/2∂h̃

∂x̃
+ 2λ

35
ÃC h̃5/2 cosθ

F 2

∂h̃

∂x̃
+O(ε). (3.161)

We recognize the work associated to the basal friction in the first term of the right-
hand side. We still need to find a suitable expression for the remaining terms. First,
it follows from the definition of β (3.98), the expression of Ũ (0) (3.74) and Equation
(3.83) that

13β−11

250
Ã3h̃9/2∂h̃

∂x̃
+ 2λ

35

cosθ

F 2
Ã
∂h̃

∂x̃
h̃5/2

=− 3β

250
Ã3h̃9/2∂h̃

∂x̃
+λ 10

Ã2B

cosθ

F 2
Ũ (0)∂h̃

∂x̃

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
. (3.162)

By using equations (3.74), (3.78) and (3.83), we get the following exact equality:

− 3

250
Ã3h̃9/2∂h̃

∂x̃
= cosθ

F 2
Ũ (0)

(
α̃1(θ)

h̃1/2
Ũ (1) + α̃2(θ)

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

))
, (3.163)

where

α1(θ) =− 33C

2AB(34C +28)
, α̃1(θ) =− 33C

2ÃB(34C +28)
, (3.164)

and

α2(θ) = 77(9C −12)

2A2B(34C +28)
, α̃2(θ) = 77(9C −12)

2Ã2B(34C +28)
. (3.165)

Recall that Ũ (0) = Ũ +O(ε). Similarly, equation (3.73) can be written

Ũ (1) = Ũ −Ũ (0)

ε
+O(ε) = 1

ε

(
Ũ − 2

5
Ãh̃3/2

)
+O(ε), (3.166)

and similarly for (3.82)

ψ̃(1) − ÃŨ (1)

5h̃1/2
= 1

ε

(
ψ̃− Ũ 2

4h̃2

)
+O(ε). (3.167)

We can thus modify (3.163) and obtain

− 3

250
Ã3h̃9/2∂h̃

∂x̃
= Ũ cosθ

εF 2

[
α̃1(θ)

h̃1/2

(
Ũ − 2

5
Ãh̃3/2

)
+ α̃2(θ)

(
ψ̃− Ũ 2

4h̃2

)]
+O(ε). (3.168)
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In a similar fashion, we have

λ
10

Ã2B

cosθ

F 2
Ũ (0)∂h̃

∂x̃

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
=λŨ

10cosθ

εF 2 Ã2B

(
ψ̃− Ũ 2

4h̃2

)
+O(ε). (3.169)

8.2. Expression of the critical value of λ
The dispersion relation of System (3.116) can be written det(M(ε)) = 0, with M(ε) =

R cosθ/F 2 + iεL,

L =
 k −ω k 0

[(1− 3C
4 + Cλ

7 ) 1
F 2 + 33

64 + 15λ
176 ]k k −ω ( 11

16 + 5λ
44 )k

0 0 k −ω

 , (3.170)

and

R =
 0 0 0

− 3
2B − 4λ

5B
1
B + 4λ

5B − 8λ
5B

3α1(θ)−α2(θ) −2α1(θ)+α2(θ) −2α2(θ)

 . (3.171)

We denote by g (εω,εk,F ) the determinant det(M(ε)). From the dispersion relation, k
can be expressed as a function of (ω,F ) :

g (ω,k,F ) = 0 ⇔ k = k(ω,F ). (3.172)

We are now interested by the shape of the neutral stability curve in the long-wave
limit, i.e. when ε goes to zero. This amounts to study the behaviour of g (ω,k,F ) near
ω= 0,k = 0,F = Fc . We thus write a Taylor expansion of the dispersion relation at this
point, up to order 4:

g (ω,k,F ) =
4∑

ℓ=0

∑
ℓ1+ℓ2+ℓ3=ℓ

ωℓ1 kℓ2 (F −Fc )ℓ3

(ℓ1!)(ℓ2!)(ℓ3!)

∂ℓg

∂kℓ1∂ωℓ2∂F ℓ3
(0,0,Fc )+O(∥(ω,k,F−Fc )∥5).

(3.173)
A similar expansion can be written for the wave number k:

k(ω,F ) =
4∑

ℓ=0

∑
ℓ1+ℓ2=ℓ

ωℓ1 (F −Fc )ℓ2

(ℓ1!)(ℓ2!)

∂ℓk

ωℓ1∂F ℓ2
(0,0,Fc )+O(∥(ω,F −Fc )5∥). (3.174)

The expansions (3.173), (3.174) can be combined to obtain an expansion of g (ω,k(ω,F ),F ):

g (ω,k(ω,F ),F ) =
4∑

ℓ=0

∑
ℓ1+ℓ2=ℓ

αℓ1,ℓ2ω
ℓ1 (F −Fc )ℓ2 +O(∥(ω,F −Fc )5∥), (3.175)

where the coefficients αℓ1,ℓ2 depend on the partial derivatives of g and k evaluated at
(ω,k,F ) = (0,0,Fc ). Since g (ω,k(ω,F ),F ) = 0, all the coefficients αℓ1,ℓ2 are equal to 0.
The relations αℓ1,ℓ2 = 0 then enable to compute explicitly all the partial derivatives of
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k. After some computations, we obtain that the Taylor expansion of Im(k)(ω,F ) is

Im(k) =−BFc

5
ω2(F −Fc )+aω4 − B

10
ω2(F −Fc )2 +O(∥(ω,F −Fc )∥5). (3.176)

where

a = B 3F 4
c (14+17C )[8890−2999C +36λ(42+41C )][847(3C −4)+20λ(84+157C )]

559020000(28−21C +4Cλ)2
.

(3.177)
The neutral stability curve is given by Im(k)(ω,F ) = 0. We deduce that this curve can
also be written as Fc = Fc (ω), where ∂Fc /∂ω|ω=0 = 0 and

∂2Fc

∂ω2

∣∣∣∣
ω=0

= 10a

BFc
. (3.178)

It follows that ∂2Fc /∂ω2|ω=0 vanishes when a vanishes, i.e. for the following critical
values of λ:

λ−
c = 2999C −8890

36(42+41C )
< 0 and λ+

c = 847(4−3C )

20(84+157C )
> 0. (3.179)

In order to have a well-posed model, it is required to have λ ≥ 0 (otherwise U may
blow up), and thus to discard λ−

c . The only possible value is thus λ+
c .

8.3. Critical Froude number for first-order two-equation
hyperbolic systems

We consider a very general first-order hyperbolic system of two equations for mass
and momentum balance, modelling a fluid down an inclined plane. We assume that
the pressure is hydrostatic and that the only other effects are the weight and a friction
depending on the fluid depth h and of the average velocity U . Otherwise the rheology
is not specified. It can be for instance the Newtonian rheology or the µ(I ) granular
rheology. The shape factor is equal to 1. Once written in a dimensionless form and
linearized around the equilibrium values h = 1 and U = 1, the linear system for the
small perturbations can be written with the matrix k −ω k

ik

(
c1

cosθ

F 2
+ c2

)
− c3(θ)

F 2
i (k −ω)+ c4(θ)

F 2

 , (3.180)

where c1, c2, c3(θ) and c4(θ) are constants, c3 and c4 depending on the angle θ. We
assume that the wave number k is real and the angular frequency ω is complex. The
neutral stability is then defined by Im(ω) = 0. Writing that the determinant of the
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above matrix is equal to zero yields, in the neutral stability conditions,

ω= k

(
1+ c3

c4

)
(3.181)

which means that the phase velocity is constant on the neutral stability curve, and

Fc = c4

√
c1 cosθ√

c2
3 − c2c2

4

(3.182)

where Fc is the critical Froude number. The critical Froude number is therefore
independent of the frequency.

For a consistent first-order two-equation model for the Newtonian rheology, the
constants are (see Richard, Gisclon, et al. 2019)

c2 = 4− 18

5
c1 ; c3 = 2c1 sinθ ; c4 = c1 sinθ, (3.183)

and c1 can be chosen arbitrarily. The dimensionless phase velocity is then equal to 3
and the Froude number is

Fc =
√

18

5
cosθ , Fc =

√
18

5
, (3.184)

which are the consistent values of the phase velocity and of the critical Froude number
for the Newtonian rheology in the long-wave limit.

For the model of Forterre and Pouliquen 2003 or Gray and Edwards 2014 without
diffusion, we have

c1 = 1 ; c2 = 0 ; c3 = 3cosθ

2B
; c4 = cosθ

B
. (3.185)

This gives a phase velocity equal to 5/2 and a critical Froude number

Fc = 2

3

p
cosθ , Fc = 2

3
, (3.186)

which is different from the consistent critical Froude number (3.133) for the µ(I )
rheology in the long-wave limit (Forterre 2006).

8.4. Diffusive terms in the energy balance equation
Equation (3.48) yields

ũ(0)∂τ̃
(0)
xx

∂x̃
= 2Ã

3

(
h̃3/2 − (h̃ − z̃)3/2) ∂τ̃(0)

xx

∂x̃
. (3.187)
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From previous computations, we obtain∫ h̃

0
h̃3/2∂τ̃

(0)
xx

∂x̃
= 2

3
φsinθ

[(
∂h̃

∂x̃

)2

h̃5/2 + ∂2h̃

∂x̃

h̃7/2

2

]
(3.188)

We also compute with (3.136)∫ h̃

0
(h̃ − z̃)3/2∂τ̃

(0)
xx

∂x̃
= 2

3
φsinθ

[(
∂h̃

∂x̃

)2
h̃5/2

20
+ ∂2h̃

∂x̃2

h̃7/2

7

]
(3.189)

Hence ∫ h̃

0
ũ(0)∂τ̃

(0)
xx

∂x̃
=2

9
Ãφsinθ

[(
∂h̃

∂x̃

)2
19

10
h̃5/2 + ∂2h̃

∂x̃2

5

7
h̃7/2

]
(3.190)

and∫ h̃

0
ũ(0)∂τ̃

(0)
xx

∂x̃
−φF 2 ∂

∂x̃

(
ν̃effh̃Ũ (0)∂Ũ (0)

∂x̃

)
= 2Ãφsinθ

3

[
− 1

15
h̃5/2

(
∂h̃

∂x̃

)2

+ 4

105
h̃7/2∂

2h̃

∂x̃2

]
(3.191)

=φF 2

[
8

7

∂

∂x̃

(
ν̃effh̃

3∂ψ̃
(0)

∂x̃

)
− 2

3
ν̃effh̃

(
∂Ũ (0)

∂x̃

)2]
.
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4. Régularisation et validation d’un
modèle moyenné sur la
profondeur pour les
écoulements granulaires
consistant avec la rhéologie µ(I )
incompressible

Dans ce chapitre, on présente une version régularisée du modèle introduit au cha-
pitre 3. En effet, le modèle du chapitre 3 a été dérivé en effectuant un développement
asymptotique au voisinage d’un écoulement stationnaire et uniforme. Par conséquent,
il n’est valide que dans un intervalle de pentes restreint pour lequel ces écoulements
existent. En dehors de cet intervalle, et notamment lors des transitions liquide/solide
et liquide/gaz, le modèle écrit au chapitre 3 ne peut pas être utilisé tel quel. Afin d’ob-
tenir un modèle qui reste pertinent pour des pentes arbitraires, on introduit dans ce
chapitre un coefficient de régularisation permettant de modéliser une transition entre
différents régimes d’écoulement. Ce coefficient est écrit de manière à préserver la
consistance à l’ordre 1 avec la rhéologieµ(I ) dans l’intervalle de pentes pour lesquelles
il existe des écoulements stationnaires et uniformes. En dehors de ces pentes, le mo-
dèle garde une structure bien posée. Les prédictions du modèle régularisé sont ensuite
validées par des comparaisons avec des données expérimentales dans une grande
gamme de régimes non stationnaires et non uniformes. On étudie tout d’abord le cas
des fronts secs, et on montre que le modèle prédit avec succès la variation des profils
avec le nombre de Froude, tout en gardant un front bien défini. On montre ensuite
que le modèle donne des résultats en bon accord avec des données expérimentales
dans le cas de l’effondrement d’une colonne de grains sur une pente faible. Enfin, on
effectue une troisième validation dans une configuration avec une pente importante
et une topographie variable. Ce chapitre est l’objet d’un projet d’article en cours de
rédaction.

1. Introduction
Granular flow models are used in a wide scope of applications, from the prediction of

natural hazards (dry snow avalanches, landslides) to the description of many industrial
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processes. In the dense regime, the behaviour of these flows is mainly driven by
the mechanical interactions between the particles (friction and collisions). At the
flow scale, collective effects can emerge from these local interactions, increasing the
complexity of the description of the media. For a general introduction to the subject,
we refer to the book of Andreotti et al. 2013.

In the context of gravity flows down a slope, an efficient way to model shallow
flows is to use depth-averaged equations. Indeed, depth-averaged models have a
reduced computation time due to space dimension reduction and the incorporation
of boundary conditions into the depth-averaged variables. A depth-averaged two-
equation model specifically written for the modelling of granular flows was proposed
by Savage et al. 1989. The model used shallow water equations, complemented
with source terms accounting for a Coulomb friction law. More complex versions of
this system were also implemented in order to take into account two dimensions, an
arbitrary topography, and were used in many geophysical applications (Denlinger et al.
2004; Pudasaini et al. 2003; Bouchut and Westdickenberg 2004; Mangeney-Castelnau,
Bouchut, et al. 2005).

In the work of Pouliquen 1999b, stationary and uniform granular flows were ob-
tained on a rough bottom. In particular, it was shown that for the same material, the
equilibrium could be attained on different slopes. As this behaviour is not permitted
by a constant friction coefficient, a different friction law was proposed in the same
paper. The friction coefficient is then a function of the height of the flow h and of
the mean velocity U . This function is determined by the mean of an empirical coeffi-
cient representing the depth of the granular deposit left by a stationary uniform flow,
called hstop . This law enabled to predict accurately the shape of dry granular fronts
(Pouliquen 1999a). A more complex version was then proposed by Pouliquen and
Forterre 2002, which enabled the transition towards a static friction coefficient close to
flow stopping. The static friction coefficient was written with the help of the empirical
parameter hst ar t , representing the smallest height at which a granular media initially
at rest starts to flow. This resulted in a non-monotonic friction law, enabling to take
hysteresis into account and was successfully applied to the spreading of a granular
mass.

This law was then generalised into a local rheology (GDR MiDi 2004), by the assump-
tion that the friction law of Pouliquen 1999b was valid in every point of the flow. To
obtain a local law, the dependence on the global variables h and U was replaced by a
dependence on a local dimensionless parameter I called inertial number, depending
on the shear rate and on the pressure. This local law was then written in a tensorial
form by Jop et al. 2006, giving rise to a constitutive law called µ(I )-rheology. This rhe-
ology enabled to give a precise description of stationary uniform flows down inclined
planes. In particular, it predicts a Bagnold velocity profile, which is consistent with
experimental observation and discrete simulations (GDR MiDi 2004). This tensorial
rheology was used to study granular flows in various regimes (see e.g. Lagrée, Staron,
et al. 2011; Ionescu et al. 2015; H. A. Martin et al. 2023). However, Barker, Schaeffer,
Bohórquez, et al. 2015 showed that this rheology is ill-posed in the limits of low and
high inertial numbers, exhibiting Hadamard’s instability. Some generalisations of
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the rheology were proposed in order to regularise this behaviour, based on either a
modification of the friction law (Barker and Gray 2017), or on the integration of com-
pressibility effects into the rheology (Heyman et al. 2017; Barker, Schaeffer, Shearer,
et al. 2017; Schaeffer et al. 2019).

The µ(I )-rheology was also used to improve the depth-averaged models. Granular
roll waves were observed by Forterre and Pouliquen 2003 above a critical Froude num-
ber. The model of Pouliquen 1999b was used to estimate this critical Froude number,
with a good agreement with the observations, although the theoretical prediction over-
estimated slightly the measured threshold. However, a cut-off frequency above which
no instability developed was observed, in contradiction with the predictions of the
model. Forterre 2006 and Gray and Edwards 2014 added a depth-averaged diffusive
terms to the two-equation model of Pouliquen 1999b with friction law. They showed
that this enables to predict accurately the cut-off frequency of the roll-wave instability
observed by Forterre and Pouliquen 2003, without affecting the instability threshold
given by the critical Froude number. The model of Gray and Edwards 2014 was used
to predict erosion-deposition waves (Edwards and Gray 2015), and the formation
of levees (Edwards, Viroulet, et al. 2017). The Bagnold profile was also taken into
account via the addition of a shape factor of 5/4 into the depth-averaged momentum
equation. Saingier et al. 2016 showed that this enables to predict the flattening of the
front profile with the increase of the Froude number, with a very good accuracy, and
that the model with a shape factor of 5/4 is much better when the Froude number
is above 1. However, this addition of a shape factor different from 1 resulted in an
nonphysical behaviour: an infinite precursor film appears, which is not observed in
the experiments. Furthermore, taking into account a shape factor of 5/4 in the model
of Pouliquen 1999b yields a worse prediction of the instability threshold of the roll
waves instability.

An alternative method to take into account non uniform velocity profiles in depth-
averaged models was proposed by Teshukov 2007. This method consists in considering
an augmented model, with additional evolution equations for quantities accounting
for the velocity fluctuations, obtained consistently with the depth-averaging proce-
dure. This method yields a model that admits an energy equation, which is not the
case for a two-equation model with a shape factor different from 1 (Richard and Gavri-
lyuk 2012). In the one dimensional case, only one additional variable is needed, and
it is called enstrophy because it is related to the square of the vorticity (Richard and
Gavrilyuk 2012). This method was used to derive depth-averaged models for New-
tonian fluids (Richard, Ruyer-Quil, et al. 2016; Kazakova et al. 2019) and viscoplastic
flows (Denisenko, Richard, et al. 2023).

This method was implemented by the authors in the case of granular flows (De-
leage and Richard 2025). The three-equation model obtained was also shown to be
consistent at order one with the µ(I )-rheology. This means that a solution of the µ(I )
constitutive equations yields an approximate solution of the depth-averaged model,
up to an O(ε2) error. Here, ε denotes the usual shallow-water parameter. This consis-
tency was obtained by taking into account the first-order correction to the friction
law of Pouliquen 1999b, as well as the Bagnold profile through the enstrophy variable.
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A consequence of the consistency is that the instability threshold of the roll waves
instability is the same for the depth-averaged model and for the µ(I )-rheology in the
long-wave limit, which was computed explicitly by Forterre 2006. This is not the case
with the two-equation models. The three-equation model has a hyperbolic structure
with source terms, compatible with an energy equation. A higher-order version of the
model was also proposed, with diffusive terms similar to the one of Gray and Edwards
2014. This version of the model predicts accurately the phase velocity and the cut off
frequency of the roll wave instability.

The limits of the model of Deleage and Richard 2025 were studied by the authors.
They showed that the well-posedness of the model does not hold in the liquid/solid
and liquid/gas transitions, i.e. when the slope reaches a lower or an upper threshold.
This is a consequence of the fact that the model was written using an asymptotic
expansion valid only close to stationary and uniform flows. For the µ(I )-rheology, the
range of slopes at which these flows can be observed is limited, and the three-equation
model of Deleage and Richard 2025 cannot be used outside this range. In this paper,
we propose a regularised version of the three-equation model of Deleage and Richard
2025, valid at any slope. We then show by comparisons with experimental data that
the regularised model is accurate in a lot of different regimes. In section 2, we present
in details the regularised model. In section 3, we study the dry fronts given by the
regularised model. The regime of small slopes at which the flow stops is analysed in
section 4. Finally, the performances of the model on a variable topography, enabling
a transition from an accelerated regime on a steep slope to a stopping phase on a
horizontal bottom, are investigated in section 5.

2. Presentation of the model

2.1. A brief recall of the model of Deleage and Richard 2025

Figure 4.1. – Definition sketch
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The model of Deleage and Richard 2025 is a three-equation model for a granular
flow down an inclined plane of angle θ under the action of gravity g (see figure 4.1).
The grain diameter d , the particles density ρp and the solid volume fraction φ are
supposed constant. The model is derived consistently from the incompressible µ(I )-
rheology, defined by the three parameters µ1,µ2 and Im , such that the internal friction
coefficient µ is given as a function of the inertial number I as (Jop et al. 2006):

µ(I ) =µ1 + µ2 −µ1

1+ Im
I

, with I = |γ̇|d√
p/ρp

. (4.1)

The scalars |γ̇| and p respectively stand for the local shear and pressure inside the
flow.

The three variables of the model are the flow depth h, the mean velocity U and the
enstrophy ψ, which is linked to the shear (see the definition in Deleage and Richard
2025). Their evolution is governed by the following system:

∂h

∂t
+ ∂hU

∂x
= 0, (4.2a)

∂hU

∂t
+ ∂

∂x

(
hU 2 +βh3ψ+K

g h2

2
cosθ

)
= g cosθ

[
h(tanθ−µb)+ 10λ

A2B

(
ψ− U 2

4h2

)]
, (4.2b)

∂hψ

∂t
+ ∂hUψ

∂x
= 2gU cosθ

h2

[
α1

h1/2

(
U − 2

5
Ah3/2

)
+α2

(
ψ− U 2

4h2

)]
. (4.2c)

Equation (4.2a) is the depth-averaged mass equation, equation (4.2b) is the depth-
averaged horizontal momentum equation, and equation (4.2c) is the enstrophy equa-
tion. These three equations are written in conservative form. The expressions of the
coefficients A,B ,C ,α1 and α2 are

A = Im
tanθ−µ1

µ2 − tanθ

√
φg cosθ

d
, B = µ2 −µ1

(µ2 − tanθ)(tanθ−µ1)
, (4.3)

C = tanθ

(
2tanθ− 1

B

)
, (4.4)

α1 =− 33C

2AB(34C +28)
, α2 = 77(9C −12)

2A2B(34C +28)
. (4.5)

The parameters λ,β and K are given by

λ= 847(4−3C )

20(157C +84)
, β= 11

16
+ 5λ

44
, K = 1− 3C

4
+ λC

7
, (4.6)
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and the basal friction µb is given by

µb =µ1 + µ2 −µ1

Im
2h3/2

p
φg cosθ

5dU +1
. (4.7)

These equations form a hyperbolic system of conservation laws with relaxation source
terms. They are compatible with the following energy balance equation:

∂he

∂t
+ ∂

∂x
(hU e +ΠU ) = gU cosθ

×
[

h(tanθ−µb)+ βα1

h1/2

(
U − 2

5
Ah3/2

)
+

(
βα2 + 10λ

A2B

)(
ψ− U 2

4h2

)]
,

(4.8)

where the specific energy is

e = U 2

2
+ βh2ψ

2
+K

g h

2
cosθ (4.9)

and

Π=βh3ψ+K
g h2

2
cosθ. (4.10)

As it was shown in Deleage and Richard 2025, this model enables to recover the
threshold of the µ(I )-rheology computed by Forterre 2006 for the granular roll waves
instability, taking into account a steady uniform flow with a Bagnold profile. However,
the µ(I )-rheology only allows the existence of such steady uniform flows for an angle
θ such that

µ1 < tanθ <µ2. (4.11)

Indeed, these flows can only occur when the weight is compensated by the friction,
which gives the equilibrium condition µ = tanθ. For the standard form of the µ(I )
curve (4.1), the friction coefficient µ is restricted to the interval (µ1,µ2). Hence no
steady uniform flow can be obtained when the condition (4.11) is not satisfied (apart
from uniform flow at rest). As a consequence, the definitions (4.3), (4.4) (4.5), (4.6)
of the coefficients of the model are only valid when condition (4.11) holds true. For
an inclination angle out of the range (arctanµ1,arctanµ2), the model (4.2) cannot
be used. We refer to Deleage and Richard 2025 for more details concerning these
limitations of system (4.2).

Another problem of system (4.2), which is also inherited from the µ(I ) rheology, can
occur even when the condition (4.11) is satisfied, and is linked with the value of the
parameter µ2. In Forterre 2006, Forterre showed that, for the µ(I )-rheology, the roll
waves instability occurs when the Froude number F is greater than a critical Froude
number Fc given by

F 2
c = 16

25
(4−3C ), (4.12)

and C is given by equation (4.4). In Deleage and Richard 2025, the authors showed
that if µ2 >

p
2/3, there are some values of θ such that (4.11) is satisfied and 4−3C < 0,
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which implies that every steady uniform flow is unstable, whatever the Froude number
is (see (4.12)). In system (4.2), this unstable behaviour is materialised by the fact that
the coefficients K and α2 change sign, leading to a model that can be ill-posed. In the
next subsection, we propose a regularised version of system (4.2), which is defined
and well-posed for every inclination angle θ.

2.2. Regularised model
In order to regularise system (4.2), we introduce the coefficient f defined by

f =

exp

(
2− 25U 2

4A2h3
− 4A2h3

25U 2

)
, µ1 < tanθ <µ2,

0, else.

(4.13)

Let us motivate this formula. First, it follows from (4.13) that 0 ≤ f ≤ 1, and that f = 0
in the following three cases:

— when (4.11) is not satisfied;
— when h = 0, i.e. in a dry front;
— when U = 0, i.e. when the flow stops.

Note that, for a steady uniform flow, the depth-averaged velocity and the depth are
linked via the relation U = 2Ah3/2/5 (Pouliquen 1999b, see also Deleage and Richard
2025), hence f = 1. The coefficient f may thus be seen as a quantification of the
distance between the solution of system (4.2) and a steady uniform flow.

As a consequence, we seek to write the regularised model as an interpolation be-
tween system (4.2) when f = 1 and another system when f = 0. When doing so, one
must ensure that the consistency between system (4.2) and the µ(I )-rheology is pre-
served by the regularisation procedure. Indeed, let us introduce as usual h0 the typical
height of the flow, and L0 a typical horizontal length. The shallow-water parameter ε
is defined by

ε= h0

L0
. (4.14)

Deleage and Richard 2025 showed that system (4.2) is consistent at order 1 with the
µ(I )-rheology, which means that an exact solution of the governing equations of the
µ(I )-rheology yields an approximate solution of system (4.2), up to an O(ε2) remainder.
Let us now suppose that condition (4.11) is satisfied. We introduce the dimensionless
variables h̃ and Ũ given by

h̃ = h

h0
, Ũ = 5U

2Ah3/2
0

. (4.15)

It follows that the coefficient f can be written

f = exp

(
2− Ũ 2

h̃3
− h̃3

Ũ 2

)
. (4.16)

Then if we assume as in Deleage and Richard 2025 that Ũ satisfies an asymptotic
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expansion, given by

Ũ = Ũ (0) +εŨ (1) +O(ε2) = h̃3/2 +εŨ (1) +O(ε2), (4.17)

we deduce that
f = exp

[
O(ε2)

]= 1+O(ε2). (4.18)

Thus, by using carefully the coefficient f , we can ensure that the error terms are at
most O(ε2), and that the consistency of the regularised model is preserved.

It remains to specify the system to be used far from steady uniform flows, i.e. when
f = 0. In order to do this, we treat each equation of (4.2) separately.

1. Equation (4.2a) is the equation of conservation of mass. It is expected to be valid
in every flow regime, so we keep it unchanged in the regularised version of the
model.

2. Equation (4.2b) is the balance of momentum. We do not modify the left-hand
side of the equation in the regularised version, but we change the expression of
the right-hand side:
— We replace the basal friction µb by the non-monotonic friction law denoted

here µ(h,U ) that was proposed by Pouliquen and Forterre 2002 and given by

µ(h,U ) =



µb ,
|U |√

g h cosθ
>β∗,(

|U |
β∗

√
g h cosθ

)γ
(µ1 −µ3)+µ3 + µ2 −µ1

h
L +1

, 0 < |U |√
g h cosθ

<β∗,

min

(
µ3 + µ2 −µ1

h
L +1

,

∣∣∣∣tanθ−K
∂h

∂x

∣∣∣∣
)

, U = 0,

(4.19)
Here the constant β∗ is a parameter appearing in the scaling

|U |√
g h cosθ

=F =β∗
h

hstop (θ)
(4.20)

(with hstop (θ) the depth of the static layer left by a steady uniform flow,
see Pouliquen 1999b) and characterising the transition between the static
and dynamic regimes. Other criteria for the transition were proposed (see
Edwards, Viroulet, et al. 2017; Edwards, Russell, et al. 2019) but we choose
to keep here the original formulation of Pouliquen and Forterre 2002. An
advantage of this non-monotonic law is that it allows to capture frictional
hysteresis. A drawback is that it involves, in addition to the three parameters
µ1,µ2, Im of the rheology, four other parameters (µ3,β∗,L,γ) which are not
always determined by experimental measurements. In order to be able to
compare the performances of our model with laboratory data even when
these parameters are not specified, we proceed as in Poulain et al. 2023
and set in this case β∗ = 0.136, L = 1.3d , γ = 10−3 and µ3 = tanθ3, where
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θ3 = θ1 +1.2◦ and tanθ1 =µ1.
— The relaxation term with a factor λ in the momentum equation ensures

consistency in order to obtain the right instability threshold near a steady
uniform flow. When condition (4.11) is not true, there is no purpose to keep
this term. We thus multiply this term by the coefficient f and set it equal to
zero when tanθ is outside (µ1,µ2).

3. Equation (4.2c) is the equation of enstrophy. The left-hand side does not need
to be regularised since it is only a conservation equation. However, the right-
hand side is made of relaxation terms ensuring consistency near stationary and
uniform flows. As in the momentum equation, we choose to multiply these
terms by the factor f in order to set them equal to zero when f = 0. Recall that at
equilibrium, the enstrophy ψ is equal to U 2/(4h2), corresponding to a Bagnold
velocity profile, and to a shape factor α= 5/4 (the shape factor can be defined
with the help of the enstrophy by α= 1+h2ψ/U 2). Far from equilibrium, few
data on the velocity profile or on the shape factor of a granular flow are available.
However, Lagrée, Saingier, et al. 2017 showed that, in a dry front, the shape factor
is equal to 5/4, except close to the front where it goes to 1 (see section 3). We
thus choose to keep an enstrophy relaxing to U 2/(4h2) (i.e. a Bagnold profile) far
for equilibrium, except close to a dry front where we want the enstrophy to relax
towards 0. A way to do this is to impose the following enstrophy equation when
f = 0:

∂hψ

∂t
+ ∂hUψ

∂x
=−1

τ

(
ψ−e− 5d

h
U 2

4h2

)
, (4.21)

where τ is a relaxation time (in fact, τ has the dimension of a time divided by a
length, since the time derivative is written on hψ). Indeed, far from a dry front,

h ≫ d , hence e− 5d
h ≈ 1 and the enstrophy relaxes towards U 2/(4h2) (Bagnold

profile). Close to a dry front, h → 0, hence e− 5d
h goes to zero. We now need to

specify the relaxation time τ. We cannot choose the same one as in equation
(4.2c), since it depends on the coefficient α2 which is not defined when tanθ
is not between µ1 and µ2. However, we can use the equilibrium expression
U = 2Ah3/2/5 to write the relaxation time of equation (4.2c) as

−1

τ
= 2gUα2 cosθ

h2
≈ 4g Aα2 cosθ

5h1/2
= 4d

5Im

√
g cosθ

φh

77(9C −12)

2(34C +28)

(µ2 − tanθ)2

µ2 −µ1
(4.22)

We could keep this expression to define τ, but it vanishes when tanθ = µ2. In
order to avoid this, we use the same expression, replacing the factor (µ2 − tanθ)2

by (µ2 −µ1)2.

Finally, we change the definition of the constant C in some cases in order to get rid of
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the instability described at the end of §2.1. We thus set

C =



2µ2
1 if tanθ ≤µ1,

min

[
2µ2

2, tanθ

(
2tanθ− 1

B

)]
if µ1 < tanθ and µ2 <

√
2

3
,

min

[
1,tanθ

(
2tanθ− 1

B

)]
if µ1 < tanθ and µ2 ≥

√
2

3
.

(4.23)

The regularised system can be written:

∂h

∂t
+ ∂hU

∂x
= 0, (4.24a)

∂hU

∂t
+ ∂

∂x

(
hU 2 +βh3ψ+K

g h2

2
cosθ

)
= g cosθ

[
h[tanθ−µ(h,U )]+ 10λ f

A2B

(
ψ− U 2

4h2

)]
, (4.24b)

∂hψ

∂t
+ ∂hUψ

∂x
= 2 f δgU cosθ

h2

[
α1

h1/2

(
U − 2

5
Ah3/2

)
+α2

(
ψ− U 2

4h2

)]
+ (1− f δ)

α3

h1/2

(
ψ−e− 5d

h
U 2

4h2

)
. (4.24c)

The coefficients A,B ,α1,α2,λ,K ,β are defined as before by the equations (4.3), (4.5),
(4.6), with the regularised definition of C given in (4.23). The regularisation coefficient
f is defined in equation (4.13). By convention, any term having the coefficient f in
factor is set equal to zero when f = 0. The non-monotonic friction law is defined in
(4.19), and the coefficient α3 is equal to

α3 = 4d

5Im

√
g cosθ

φ

77(9C −12)

2(34C +28)
(µ2 −µ1), (4.25)

with C defined in (4.23). The only parameter which has not been discussed yet is the
exponent δ in the regularised enstrophy equation (4.24c). This parameter is used to
control the shape factor in a dry front and is set equal to δ= 1/20 (see section 3).

The regularised model is still a hyperbolic system of conservation laws with source
terms. It admits the energy equation

∂he

∂t
+ ∂

∂x
(hU e +ΠU ) = h3/2(1− f δ)α3

(
ψ−e− 5d

h
U 2

4h2

)
+ gU cosθ

×
[

h[tanθ−µ(h,U )]+ β f δα1

h1/2

(
U − 2

5
Ah3/2

)
+

(
β f δα2 + 10λ f

A2B

)(
ψ− U 2

4h2

)]
,

(4.26)

and is well-posed for every inclination angle θ. When µ1 < tanθ < µ2, the fact that
f = 1+O(ε2) (see equation (4.18)) implies that the regularised model is fully consistent
with the µ(I )-rheology up to order 1 (except in the special cases discussed hereafter).

192



4. Régularisation et validation du modèle d’écoulement granulaire incompressible –
2. Presentation of the model

Furthermore, one can check that the linearised version of (4.24) around a stationary
uniform flow is exactly the same as for the non regularised system (4.2). As a con-
sequence, the theoretical predictions of neutral stability curve, phase velocity and
spatial growth rate are the same and the study of Deleage and Richard 2025 can be
used for the regularised model.

When µ1 < tanθ < µ2, the consistency of the regularised system (4.24) with the
µ(I )-rheology is lost in the two following cases:

— When the Froude number is below the threshold β∗, the friction law of the
regularised model changes and transitions towards a static coefficient. This
choice was used by Pouliquen and Forterre 2002 and enables to capture the
deposit of height hstop (θ) which is left by a steady uniform flow. Note that the
µ(I )-rheology predicts that steady uniform flows can have an arbitrarily small
height. This is in contradiction with experimental observations, as stated by
Pouliquen and Forterre 2002: "no steady uniform flow is observed with a lower
Froude number, i.e. with a thickness h less than hstop ". The loss of consistency
with the rheology is thus motivated by the fact that the predictions of the rheology
are not in agreement with the observations in this regime.

— In the special case where µ2 > p
2/3 and tanθ is close to µ2, the regularised

definition of C (see (4.23)) also implies that consistency with the rheology is lost.
In this case, the rheology predicts that all steady uniform flows are unstable,
and the non regularised system (4.2) can become ill-posed. Few knowledge of
the behaviour of the flow in this regime is available (see however the work of
Börzsönyi and Ecke 2006). In the absence of more information, we choose to set
C = 1 in this case (see equation (4.23)) in order to keep a well-posed system, thus
losing consistency with the rheology. Note that the slopes at which this problem
can occur are quite restricted, since θ has to be smaller than θ2 = arctan

(
µ2

)
and

greater than arctan
(
1/
p

2
)≈ 35◦ (the exact lower bound for θ is greater than 35◦

and depends on µ1 and µ2). Few experimental data in this regime are available,
and we did not compare the performances of our regularised model in this case.

As explained before, the behaviour of the regularised model close to steady uniform
flows is the same as the one of the non regularised model, which was studied in
Deleage and Richard 2025. In the next sections, we perform numerical validations of
the regularised model in three regimes far from steady uniform flows: dry fronts, flow
stopping, accelerated flows. We compare the performances of system (4.24) with both
experimental data and the classical two-equation model, given by

∂h

∂t
+ ∂hU

∂x
= 0,

∂hU

∂t
+ ∂

∂x

(
αhU 2 + g h2

2
cosθ

)
= g h cosθ[tanθ−µ(h,U )],

(4.27)

where µ(h,U ) is defined by (4.19) and the shape factorα is equal to 1, except in section
3 where we also use the value α= 5/4.
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3. Study of dry fronts
Dry granular fronts are a simple example of flows that are not steady uniform.

Indeed, they can be described as a travelling wave, i.e. as a solution propagating at a
constant speed c (see Andreotti et al. 2013). As recalled hereafter, granular flow fronts
are well-predicted by two-equation models, hence it is important to see also how the
three-equation model (4.24) performs. In the case of the two-equation model (4.27),
the mass conservation implies that the mean velocity U is constant in a dry front and
equal to the propagation speed c (Andreotti et al. 2013). The shape of the front is thus
described by the following ordinary differential equation (ODE) (Andreotti et al. 2013;
Saingier et al. 2016): [

(α−1)F 2 h∞
h

+1

]
∂h

∂x
= tanθ−µ(h,U ), (4.28)

where α ≥ 1 is the shape factor, h∞ is the limit of the height at infinity and F =
U /

√
g h∞ cosθ is the Froude number at infinity. Equation (4.28) was used by Pouliquen

1999a with α= 1 (corresponding to a flat velocity profile) and successfully compared
to experimental data. In this case, the equation (4.28) reduces to

∂h

∂x
= tanθ−µ(h,U ). (4.29)

Thus there is no dependence on F ,h∞ in this case. Saingier et al. 2016 showed
that this is a good approximation when the Froude number is small, which is the
case in the experiments of Pouliquen 1999a. When h = 0, equation (4.29) yields
∂h/∂x = tanθ−µ2, which means that the front is well defined, with a contact angle
equal to arctan

(
µ2 − tanθ

)
.

When the Froude number increases (F ≥ 1), experimental investigations of Saingier
et al. 2016 showed that the front profile is flattened, and that a good agreement with
the theoretical predictions of equation (4.28) is obtained with a shape factor α= 5/4,
corresponding to a Bagnold profile. In this case, there is still a dependence of the
profile on the Froude number, since equation (4.28) can be written

∂h

∂x
= h[tanθ−µ(h,U )]

F 2h∞/4+h
. (4.30)

A drawback of the choice α= 5/4 is that the front is not well defined any more and a
precursor film of infinite length appears. Indeed, taking h = 0 in the right-hand side of
(4.30) leads ∂h/∂x = 0, which means that the slope of the profile goes to zero as h goes
to zero, resulting in an exponential tail. Hence the predictions are better with α= 5/4,
but lead to an nonphysical behaviour near the front.

This paradox might be linked with the fact that the two-equation models with a
shape factor different from 1 do not have a good structure (in particular, there is
no energy balance equation, see Richard and Gavrilyuk 2012). In Lagrée, Saingier,
et al. 2017, the shape factor was computed from two dimensional simulations of dry

194



4. Régularisation et validation du modèle d’écoulement granulaire incompressible –
3. Study of dry fronts

fronts based on an approximation of the µ(I )-rheology (granular RNS/P equations). It
was shown that the shape factor is equal to 5/4 in the flow, except close to the front
where it goes to 1. With the three-equation model (4.24), we are able to reproduce this
behaviour, since the shape factor can then be seen as an independent variable with its
own evolution equation.

In order to study the dry granular fronts given by the regularised model (4.24), we
solve it numerically with parameters reproducing the experimental settings. Another
possibility would be to write an ODE satisfied by h in the case of a travelling wave
solution of (4.24), and to study its properties like it has been done with equation (4.28)
for the two-equation model. However, a lot of terms appear in system (4.24), thus the
theoretical study is complicated and we choose to solve (4.24) numerically.

The numerical scheme that we use is based on the finite volumes method (Godunov
and Bohachevsky 1959; Toro 2013). The system is solved in the conservative variables
(h,hU ,hψ). A splitting method is performed in order to treat the conservative part
of (4.24) and the source terms separately. The conservative part is calculated with a
Rusanov Riemann solver. The source terms are computed explicitly. The hydrostatic
pressure gradient is discretized as a source term with central differences, in order to
be able to capture the starting and stopping of the flow in other configurations (see
section 4). We use a mesh size of 1 mm.

In order to treat numerically the dry fronts, we introduce a height threshold hmin.
If the value of the height in a cell is under hmin, we set the fluxes coming from the
cell and the source terms in the cell equal to zero, in order to avoid division by zero.
We choose hmin = 10−3h∞ in the case of a dry front, and hmin = 10−3h0 in other cases,
where h0 is the height of the initial condition. In every configuration studied in this
work, the height of the flow is less than 1000 particles diameters, which implies that
the threshold we choose is less than one particle diameter.

In the case of a dry front, the initial condition is an empty domain, and the bound-
ary condition is given by the equilibrium values h = h∞, U = 2Ah3/2∞ /5 = U∞, ψ =
U 2∞/(4h2) in the first mesh of the grid. It means that at t = 0, a gate of size h∞ is
opened at the left of the domain, and a flow enters and starts to propagate, with a
boundary velocity and enstrophy corresponding to the equilibrium values. After a
short transitional regime, the computed solution converges towards a travelling front
of height at infinity h∞ and of uniform speed U∞ (see figure 4.2). The enstrophy is
equal to U 2∞/(4h2) (i.e. α = 5/4), except close to the front where a transition is ob-
served between the regimes where f = 1 and where f = 0, after which the enstrophy
goes to zero (see figure 4.3). The front is well defined, and there is no precursor film.
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Figure 4.2. – Profiles of height (left) and velocity (right) at different times. Black: t =
0.71 s; blue: t = 2.61 s; brown: t = 4.55 s; green: t = 6.49 s, red: t = 8.43 s

Figure 4.3. – Left: profiles of enstrophy at the same time instants than in figure 4.2.
Right: zoom between x = 2.5 m and 2.6 m.

The first step is to determine the size of the transition zone near the front between
the regimes where α= 5/4 and where α= 1. This size is controlled by the parameter
δ > 0 appearing in the enstrophy equation (4.24c). The smaller δ, the smaller this
transition zone. The simulations of Lagrée, Saingier, et al. 2017 show that for the µ(I )-
rheology, this zone is very thin. We find a good agreement between the predictions
of our model and the results of Lagrée, Saingier, et al. 2017 for δ = 1/20 (see figure
4.4), thus we keep this value in the rest of the paper. The parameters used for the
simulations of figure 4.4 are the same than the ones used by Lagrée, Saingier, et al.
2017: µ1 = 0.35, µ2 = 0.56, Im = 0.4, φ= 1, d = 0.43 mm. The heights h∞ and slopes
tanθ used are h∞ = 1.1 cm for tanθ = 0.37, h∞ = 0.89 cm for tanθ = 0.4 and h∞ = 0.62
cm for tanθ = 0.45, corresponding respectively to a Froude number at infinity of 0.43,
1.03 and 2.09.
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Figure 4.4. – Shape factor of the granular front for three different profiles given by
the present model (full line) and the data of Lagrée, Saingier, et al. 2017
(dotted line). Black: F = 0.43; blue: F = 1.03; red: F = 2.09. The value of
the parameter δ used in the enstrophy equation (4.24c) is 1/2 (left) and
1/20 (right).

We then compare the dry front profiles given by our model with the experimental
data of Pouliquen 1999a; Saingier et al. 2016. There is no experimental data of the
volume fraction, hence we estimate it with the help of the µ(I )−φ(I )-rheology (see
Da Cruz et al. 2005):

φ=φc − Iθ∆φ, with Iθ = Im
tanθ−µ1

µ2 − tanθ
(4.31)

the inertial number at equilibrium. We take the standard values φc = 0.6 and ∆φ= 0.2
(Andreotti et al. 2013). The parameters µ1,µ2, Im are determined from the measure-
ments of hstop (see Pouliquen 1999b). In the early work of Pouliquen 1999a, a different
form of the friction law was used (exponential form), hence the values of the pa-
rameters are different. For comparison with the data of Pouliquen 1999a, we thus
use the hstop data of Pouliquen 1999b in order to find the parameters µ1,µ2 and Im

corresponding to the friction law we use (fractional form). This was also discussed
in the work of Saingier et al. 2016, in which the authors compared different forms of
the friction law. For figure 4.5, we use µ1 = tan(20.65◦), µ2 = tan(26.4◦), Im = 0.439,
d = 1.3 mm. For figure 4.6, we use µ1 = 0.35, µ2 = 0.56, Im = 0.2, d = 0.5 mm, as in
Saingier et al. 2016. For the comparison with the data of Saingier et al. 2016, we can
use the same rheological parameters, since the friction law used by the authors and
in our model is the same. The parameters for figure 4.7 are then µ1 = 0.41, µ2 = 0.76,
Im = 0.38, d = 0.2 mm. In some cases, it is difficult to know precisely the position of
the front of experimental profiles because there is a gap near the front where no data
is available. In these cases, we align the experimental data with the simulated curve
by matching the points closest to the front.

197



4. Régularisation et validation du modèle d’écoulement granulaire incompressible –
3. Study of dry fronts

Figure 4.5. – Comparison of the simulated dry fronts from system (4.24) (full lines)
with the experimental data of Pouliquen 1999a, system 2 (dots) and the
prediction of the two-equation model with α= 1 (black line), for θ = 22◦

(left) and θ = 24◦ (right).

Figure 4.6. – Comparison of the simulated dry fronts from system (4.24) (full lines)
with the experimental data of Pouliquen 1999a, system 4 (dots) and the
prediction of the two-equation model with α= 1 (black line), for θ = 21◦

(left) and θ = 27◦ (right).
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Figure 4.7. – Comparison of the simulated dry fronts from system (4.24) (full lines)
with the experimental data of Saingier et al. 2016 (dots) and the predic-
tions of the two-equation model with α= 5/4 (dotted lines). The values
of θ are 26.2◦ (top left), 27.2◦ (top right), 28.2◦ (bottom left) and 29.2◦

(bottom right).

Overall, we find a good agreement between the predictions of the three-equation
system (4.24), the predictions of the two-equation model with a shape factor α= 5/4
(or α = 1 when the Froude number is small), and experimental data in the whole
range of investigated parameters. The worst prediction is the one of the blue curve
corresponding to h∞ = 9.8 mm and θ = 24◦ in figure 4.5. For this curve, the Froude
number is not small (F ≈ 1.2) and the prediction of the three-equation model agrees
with the one the two-equation model with shape factor α= 5/4, which also underes-
timates the height of the profile. Apart from this curve, we obtain a good accuracy
with experimental data. Note that the three-equation model is able to capture the
flattening of the profile with the increasing of the Froude number and yields a well
defined front at the same time, which is not the case with a two-equation model. This
fact motivates the use of system (4.24) for the modelling of dry fronts.

4. Avalanche stopping
Another successful prediction of the two-equation model with friction law (and

shape factor α = 1) is the stopping of a granular flow when the inclination of the
bottom is smaller than the static angle of repose (see for instance Pouliquen and
Forterre 2002; Mangeney et al. 2007; H. A. Martin et al. 2023; Mangeney-Castelnau,
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Bouchut, et al. 2005; Rocha et al. 2019; Poulain et al. 2023). A complex feature of this
configuration is the transition between static and flowing regimes. This transition
is enabled by the fact that when the medium is at rest, friction exactly balances the
other forces (weight and hydrostatic pressure gradient) acting on the medium, up to a
maximal threshold beyond which the flow starts.

From a numerical point of view, it is not straightforward to capture this transition.
The notion of well-balanced scheme was introduced by Gosse et al. 1996; Greenberg
et al. 1996 to designate the schemes that preserve steady solutions. The hydrostatic
reconstruction method of Audusse et al. 2004 provides a well balanced scheme for
the shallow water equations with topography. It was used to write the code SHALTOP,
which is a well-balanced scheme for the shallow water equations with granular friction
and arbitrary topography (Bouchut, Mangeney-Castelnau, et al. 2003; Bouchut and
Westdickenberg 2004; Mangeney-Castelnau, Bouchut, et al. 2005; Mangeney et al.
2007). In this code, the pressure gradient, the weight and the friction are discretized
as flux terms, in such a way that the scheme preserves solutions at rest. For an
introduction to well-balanced schemes, we refer to Bouchut 2004. In this work, we
choose to follow the method proposed by Denisenko 2024; Denisenko, Richard, et al.
2025: we thus discretize the pressure gradient, the weight and the friction as source
terms and apply a splitting method between the conservative part (without hydrostatic
pressure) and the source terms (including hydrostatic pressure). This way, we obtain
a scheme that preserves solutions at rest, which are for system (4.24) solutions such
that U = 0, ψ= 0 and the friction balances the weight and pressure gradient.

To evaluate the performances of system (4.24) in the regime of small inclination
angles θ, we simulate a granular dam break and compare the results with the experi-
mental data of Farin et al. 2014. Note that we are in the case in which the slope tanθ is
smaller than µ1, hence f = 0 and system (4.24) reduces to the simpler version

∂h

∂t
+ ∂hU

∂x
= 0, (4.32a)

∂hU

∂t
+ ∂

∂x

(
hU 2 +βh3ψ+K

g h2

2
cosθ

)
= g h cosθ

[
tanθ−µ(h,U )

]
, (4.32b)

∂hψ

∂t
+ ∂hUψ

∂x
= α3

h1/2

(
ψ−e− 5d

h
U 2

4h2

)
. (4.32c)

We use for the simulations the parameters that were taken in H. A. Martin et al. 2023:
µ1 = 0.48,µ2 = 0.73, I0 = 0.279, d = 0.7 mm,φ= 1. The initial condition is a rectangle of
granular media of length R0 and height aR0, where a is the aspect ratio. We investigate
the aspect ratios a = 0.7, a = 0.31 and a = 1.24, with respective lengths R0 = 20 cm,
R0 = 30 cm and R0 = 15 cm, for two inclination angles θ = 0◦ and θ = 16◦. The initial
volume is delimited by a wall on the left, the inclined plane below, the free surface
above and a gate on the right, which is opened at t = 0. For the wall boundary
condition, we add a phantom cell, in which h and ψ are equal to the height and
enstrophy of the first cell, and U is opposed to the velocity of the first cell. The results
are shown in figure 4.8.
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Figure 4.8. – Profiles of height after the granular dam break. Black dots: experimental
data of Farin et al. 2014, extracted from the figures of H. A. Martin et al.
2023. In blue, three-equation model (4.24). In red, two-equation model.

The results are in good agreement with the experimental data. As mentioned in
H. A. Martin et al. 2023, the two-equation model overestimates the initial spreading,
and gives an accurate final deposit. This is also true for the three-equation model used
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here. We note that the overestimation of the initial spreading is reduced by the use
of the three-equation model. For the two models, this overestimation increases with
the aspect ratio. Also, the prediction of the final deposit is generally better, except in
the case θ = 16◦, a = 0.31. The position of the front is very similar for the two models,
with a difference inferior to 5 cm in all the pictures, corresponding to a typical relative
deviation between 0% and 12.5%.

5. Accelerated flows
The last case we study is a simplified imitation of a scenario that can lead to an

avalanche, including both an acceleration zone where tanθ >µ2 and a stopping zone.
To study this configuration, we reproduce numerically the experiment of Poulain et al.
2023. In their setup, they use a channel divided into two portions. The first portion is a
slope of variable inclination angle. The angles used in the experiment are θ = 35◦ and
θ = 45◦. The bottom of the slope is connected to the second portion of the channel
which is a horizontal bed. The granular mass is initially at rest on the slope thanks to a
vertical gate. The opening of the gate at t = 0 makes the flow spread on the slope, until
it reaches the horizontal bed and stops.

We use the parameters that were used in Poulain et al. 2023: µ1 = 0.406, µ2 = 0.620,
µ3 = 0.430, d = 4 mm, L = 1.3d , β∗ = 0.136. The friction law used in Poulain et al. 2023
when F >β∗ reads

µ(h,U ) =µ1 + µ2 −µ1

1+ h3/2β∗
p

g cosθ
LU

. (4.33)

In order to have the same expression, it means that with the notations we use we must
choose Im and φ such that Im

√
φ= 5β∗/2.6 (see (4.7) and (4.19)). We choose φ= 0.6,

which yields Im = 5β∗/(2.6
√
φ) = 0.338. Note that φ is not constant throughout the

experiment, and the authors of Poulain et al. 2023 estimated that the maximum
dilatation is 27% when θ = 35◦, and 35% when θ = 45◦. However, system (4.24) is
derived from the incompressible µ(I )-rheology, for which φ is assumed to be constant.
As a consequence, our model does not take dilatancy into account. As in Poulain
et al. 2023, the transition between the slope and the horizontal bed is smoothed
with a second order polynomial for the numerical simulations. Note that topography
variations can cause curvature effects, that are not taken into account in our model.
The results are shown in figures 4.9 and 4.10.
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Figure 4.9. – Profiles of height after the granular dam break on the 35◦ slope. Black
dots: experimental data of Poulain et al. 2023. In blue, three-equation
model (4.24). In red, two-equation model.

Figure 4.10. – Profiles of height after the granular dam break on the 45◦ slope. Black
dots: experimental data of Poulain et al. 2023. In blue, three-equation
model (4.24). In red, two-equation model.

We observe that the flow starts too fast, as in section 4. As a consequence, the height
profiles of the numerical solutions are thinner and more spread than the ones of the
experimental data. This discrepancy is amplified by the dilatation of the flow, which
was measured in the experiments but is not reproduced in the numerical simulations.
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As a consequence, the area under the black dots increases during the accelerating
phase, while the areas under the red and blue curves stay constant throughout all the
simulation (this is a consequence of the incompressibility assumption). Again, the
initial motion is better predicted with the three-equation model. The position of the
final deposit is well predicted for θ = 35◦, and is 10 cm too far for θ = 45◦. These results
suggest that the regularised three-equation model stays pertinent even in this more
realistic situation incorporating a wide range of slopes and which is really far from
equilibrium configurations.

6. Conclusion
In this work, we present a regularised three-equation model consistent with the

µ(I )-rheology. The model is derived from a previous version which is only valid
close to stationary and uniform flows (see Deleage and Richard 2025). To obtain the
regularised version, a parameter f is introduced, that enables to obtain a well-posed
model for any slope. The parameter f is carefully written in such a way that the
consistency of the model is not affected by the regularisation procedure. Furthermore,
the linearised model around a stationary uniform flow stays unchanged upon the
regularisation process, which means that the linear properties studied in Deleage and
Richard 2025 are also valid for the regularised model.

The accuracy of the model is also investigated in different flow regimes that are far
from stationary uniform flows. We first study the case of travelling dry fronts. We show
that the model is able to capture the flattening of the front when the Froude number
increases and to have a well defined front at the same time. This is a significant
improvement of the three-equation model, since these two properties cannot be
obtained simultaneously with a two-equation model. Furthermore, a good agreement
is obtained with experimental data in the large range of investigated parameters. We
then study the spread of a granular mass after a dam break on small slopes. We again
obtain a good accuracy, and we show that the three-equation model is better close to
the start of the flow. We also observe generally a better prediction of the final deposit
obtained when the flow stops. Finally, we study accelerated flows on high slopes. For
this last test, we also consider topography variations. We show that the predictions of
the model stay valid even in this strongly unsteady configuration.

A future development of this work could be the writing of a second order version of
the model presented here, including diffusive terms. These terms could be written
with the help of a regularised version of the diffusion coefficient obtained in Gray and
Edwards 2014; Deleage and Richard 2025. A further development of this work would
be to take dilatancy into account by considering a compressible rheology. Indeed,
these effects are important for the modelling of flows on high inclination slopes.
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5. Un modèle moyenné sur la
profondeur pour les
écoulements granulaires
consistant avec la rhéologie µ(I )
compressible

Dans ce chapitre, on dérive un modèle moyenné sur la profondeur consistant
avec une rhéologie granulaire compressible. La consistance à l’ordre 1 est obtenue
grâce à un développement asymptotique en puissances du paramètre de couche
mince jusqu’à l’ordre 1. Les équations du modèle sont écrites à l’aide de moyennes de
Favre. On obtient un modèle à trois équations d’évolution, compatibles avec un bilan
d’énergie. Les variables sont le "hold-up" (correspondant à l’intégrale de la fraction
volumique sur la profondeur), la vitesse moyenne et l’enstrophie. On donne également
des formules permettant de reconstruire la hauteur, la fraction volumique moyenne
et le profil de vitesse à partir de ces trois variables. On montre que, par rapport au
modèle obtenu au chapitre 3, la compressibilité peut être prise en compte en ajoutant
un facteur correctif dans la loi de friction, et en redéfinissant une des constantes
du modèle. On étudie ensuite l’instabilité des ondes de surface. En particulier, on
obtient pour la première fois une expression pour le seuil d’instabilité théorique de la
rhéologie µ(I )−φ(I ) dans la limite des ondes longues. En effet, ce seuil est le même
pour la rhéologie et pour le modèle moyenné grâce à la consistance jusqu’à l’ordre
1. On propose également une version du modèle avec des termes additionnels de
diffusion permettant de retrouver une fréquence de coupure. La méthode utilisée
pour dériver le modèle est identique à celle présentée au chapitre 3. Par conséquent,
la structure de ce chapitre est similaire à celle du chapitre 3.

1. Introduction
The study of granular flows is an active field of research, motivated by the modelling

of natural hazards, such as avalanches, and of industrial processes. Constituted by a
large number of solid particles, granular media exhibit a rich diversity of behaviours
that makes them complex to describe in a unified way, such as hysteresis, liquid/solid
transitions, liquid/gas transitions (see Andreotti et al. 2013).

Granular fluids can be obtained on inclined bottoms. The motion is then driven
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by a competition between gravity acceleration and dissipative interactions (friction
and collisions), occurring between the particles themselves, and between the particles
and the bottom. In this configuration, depth-averaged models can be used in order to
describe the flow. The benefits of these models is that they are well-posed and fast to
solve numerically. A depth-averaged model describing the flow of a granular mass on
a topography was proposed by Savage et al. 1989. The model is a two-equation model,
giving the evolution of the height h and of the depth-averaged horizontal velocity
U of the flow. The granular properties of the medium were taken into account with
the help of a Coulomb friction law. This model was generalised to two dimensions
and to variable topographies, and used to describe natural hazards (see for instance
Denlinger et al. 2001; Mangeney-Castelnau, Bouchut, et al. 2005; Denlinger et al. 2004;
Larrieu et al. 2006; Peruzzetto et al. 2019).

An important modification to the model of Savage et al. 1989 was proposed by
Pouliquen 1999b. Instead of considering a constant friction coefficient, Pouliquen
1999b proposed a variable coefficient µ(h,U ), depending on the height and the veloc-
ity of the flow. This hypothesis enabled to match the observations of the existence of
steady uniform granular flows for different values of the slope (Pouliquen 1999b). A
non-monotonic version of the friction law of Pouliquen 1999b was also proposed by
Pouliquen and Forterre 2002, in order to capture better the flow stopping. This model
was applied to study the spreading of a granular mass (e.g. Pouliquen and Forterre
2002; Mangeney-Castelnau, Vilotte, et al. 2003; Mangeney et al. 2007).

The idea of a variable friction coefficient was then used to write a local rheology, first
in simple shear configurations (GdR MiDi 2004), then in the general three dimensional
case (Jop et al. 2006), by using the assumption of a constant solid volume fraction φ.
The dependence on the friction coefficient µ on the variables h and U was replaced
by a dependence on a local dimensionless parameter I , called inertial number. This
number can be interpreted as the ratio between a microscopic timescale and a macro-
scopic timescale (GdR MiDi 2004). The rheology was thus called µ(I )-rheology, or
incompressible µ(I )-rheology. For numerical simulations of granular flows with the
µ(I )-rheology, see for instance Lagrée, Staron, et al. 2011; N. Martin et al. 2017; H. A.
Martin et al. 2023.

The µ(I )-rheology was also used to improve the depth-averaged model of Pouliquen
and Forterre 2002. A depth-averaged diffusion term was added to the model by
Forterre 2006 and Gray and Edwards 2014. This term enabled to recover the cut-off
frequency of the roll waves instability that was observed in the experiments of Forterre
and Pouliquen 2003. For other applications of the model of Gray and Edwards 2014,
see for instance Edwards and Gray 2015; Edwards, Viroulet, et al. 2017; Kanellopoulos
2025. The Bagnold velocity profile which is predicted by the µ(I )-rheology (see e.g.
GdR MiDi 2004) was also taken into account by adding to the model a shape factor
of 5/4 in the depth-averaged momentum flux. Saingier et al. 2016 showed that it
enables a better prediction of granular fronts. However, they also showed that an
nonphysical precursor film appeared due to the shape factor of 5/4. Furthermore,
the predictions of the model with a shape factor of 5/4 are not in good agreement
with the experimental data of Forterre and Pouliquen 2003 concerning the roll waves
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instability.
This paradox was solved by Deleage and Richard 2025, who derived a three-equation

model with an additional variable called enstrophy, enabling to take into account
vertical variations of the velocity. The derivation used a method proposed by Teshukov
2007 and applied to various contexts (see for instance Richard and Gavrilyuk 2012;
Richard, Ruyer-Quil, et al. 2016; Denisenko, Richard, et al. 2023). The derivation was
made assuming an asymptotic expansion of the variables in powers of the shallow
water parameter, in order to obtain consistency at order 1 with the rheology and an
exact stability threshold for the roll waves instability. The asymptotic expansions were
also used to derive depth-averaged models by e.g. Ruyer-Quil et al. 2000; Noble et al.
2013 in other situations. A second-order version of the model with diffusion similar to
the one found by Gray and Edwards 2014 was also proposed by Deleage and Richard
2025.

A limit of the µ(I )-rheology is that it becomes ill-posed at low and high inertial
number, as shown by Barker, Schaeffer, Bohórquez, et al. 2015. Indeed, in these
regimes, it admits Hadamard instability, with means that the linear growth rate of
perturbations diverges in the high wave number limit. As a consequence, numerical
computations are grid dependent when the mesh size goes to zero (see for instance
N. Martin et al. 2017).

Another defect of the rheology is the hypothesis that the volume fraction φ is a
constant. Indeed, Da Cruz et al. 2005 showed with discrete simulations that the
volume fraction also varies with the inertial number. They thus proposed a scalar
rheology, called µ(I )−φ(I ) rheology, which is valid in simple shear configurations.
The µ(I )−φ(I ) rheology is thus a generalisation of the local rheology proposed by the
GdR MiDi 2004 . Several attempts were made to generalise the µ(I )−φ(I ) rheology
into a tensorial constitutive law, as it was done by Jop et al. 2006 in the incompressible
case. A difficulty is that, in the compressible case, the pressure cannot be defined with
the help of the incompressibility condition. Thus another relation linking the pressure
and the flow variables must be proposed.

A first approach was used by Nott 2009; Trulsson et al. 2013; Heyman et al. 2017.
They used the definition of the inertial number in order to define an equilibrium
pressure, depending on the volume fraction and on the shear rate of the flow. The
equilibrium pressure then enabled to define the deviatoric stress tensor, with the help
of two friction coefficients: the usual friction coefficient of the incompressible µ(I )-
rheology, associated to shear deformations, and an additional bulk friction coefficient,
associated to volume changes. Heyman et al. 2017 showed that this rheology enabled
to obtain well-posed equations (i.e. without Hadamard instability) when the value of
the bulk friction is high enough.

Another approach was used by Barker, Schaeffer, Shearer, et al. 2017 (see also
Andrade et al. 2012). Their idea is to write a dilatancy law linking the pressure, the
divergence of the velocity, the inertial number and the solid volume fraction. This
relation is written in such a way that one recovers the equalityφ=φ(I ) when the flow is
incompressible. The model was inspired from critical state soil mechanics (Schofield
et al. 1968; Jackson 1983) and was called compressible I -dependent rheology (CIDR).
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Barker, Schaeffer, Shearer, et al. 2017 showed that, under some assumptions on
the dilatancy law used and on the norm of the deviatoric stress tensor, the CIDR
constitutive equations are well-posed, i.e. they do not exhibit Hadamard instability.
The CIDR equations as well as the constitutive equations proposed by Heyman et al.
2017 were commented by Goddard et al. 2018.

At the depth-averaged level, a lot of work has been made to introduce dilatancy
effect for immersed granular media, also called suspensions (see for instance the
works of Pailha et al. 2009; Iverson et al. 2014; Bouchut, Fernández-Nieto, et al. 2016;
Meng et al. 2018; Sun et al. 2024; Bouchut, Drach, et al. 2025). In the case of a dry
granular flow, Bouchut, Fernández-Nieto, et al. 2021 proposed a three-equation model
for the variables φ,h and U . The model is derived from a compressible rheology, for
which the dilatancy is taken into account via a dilatancy angle, as introduced by Roux
et al. 1998. The model of Bouchut, Fernández-Nieto, et al. 2021 was used to simulate
the collapse of a granular column.

In this work, we aim to extend the previous work of Deleage and Richard 2025 to the
case of the compressible µ(I )−φ(I ) rheology. We thus aim to derive a three-equation
model for granular flow, that is able to take into account shear effects and dilatancy.
Another objective is to write a model which is fully consistent up to order 1 with the
rheology, in order to obtain the good stability threshold for the roll waves instability.
In section 2, we present the rheology that is used and the non dimensionalisation of
the equations. In section 3, we perform an asymptotic expansion of the variables up
to order 1. In section 4, we show the depth-averaging procedure. The resulting model
and its main properties are studied in section 5.

2. Governing equations

2.1. Constitutive equations
We study the flow of a granular fluid, which is described by its density ρ and its

velocity v . We assume that the fluid is made of solid particles. Hence the density is
proportional to φ the volume fraction of the beads and is written

ρ = ρpφ, (5.1)

where the constant ρp is the density of the beads. We assume that the fluid is flowing
down an inclined plane that makes an angle θ with the horizontal. The motion of the
fluid is described by the mass and momentum equations, which read

∂ρ

∂t
+div(ρv ) = 0,

∂ρv

∂t
+div

(
ρv ⊗v

)= divσ+ρg .
(5.2)
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The second order tensor σ is called the Cauchy stress tensor and can be written

σ=−pId +τ, (5.3)

where Id is the identity tensor. The quantity p is the pressure and τ is the deviatoric
stress tensor. To express the deviatoric stress tensor, we first split the strain-rate tensor

γ̇= grad v + (
grad v

)T (5.4)

into a deviatoric part and an isotropic part:

γ̇= S+div(v )Id, i.e. S = γ̇−div(v )Id (5.5)

such that Tr(S) = 0. The deviatoric stress tensor is then linked to the deviatoric strain-
rate tensor via an effective viscosity ηe :

τ= ηe S. (5.6)

In the isotropic case, ηe is a scalar. In order to define the effective viscosity, we
introduce the inertial number I , which is a dimensionless parameter given by the
relation

I = |S|d√
p/ρp

. (5.7)

The quantity d is the diameter of a bead, and |S| is the norm of the second order tensor
S, defined by

|S| =
√

S : S

2
. (5.8)

Note that, in the incompressible case, the inertial number is defined with the norm
of the strain-rate tensor |γ̇| (GdR MiDi 2004). In the compressible case, it has to be
replaced by the norm of S, as shown by the discrete simulations of Cortet et al. 2009;
Lacaze et al. 2009. We also introduce the friction coefficient µ(I ), which depends only
on I . The dependence is experimentally determined with three constants µ1, µ2 and
Im as (Jop et al. 2006)

µ(I ) =µ1 + µ2 −µ1

1+ Im/I
. (5.9)

The two constants µ1 and µ2 are limit cases: the value µ2 is the maximal value of µ(I ),
obtained when I →∞, the value µ1 is the minimal value, obtained when I = 0, and
the granular fluid only flows when |τ| >µ1p. Note that this relation can be inverted to
write

I = Im
µ−µ1

µ2 −µ
. (5.10)

The expression of the effective viscosity is then

ηe =µ(I )
p

|S| . (5.11)
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The equations are complemented by a relation linking the volume fraction φ with
the inertial number I : φ=φ(I ). The volume fraction is a decreasing function of the
inertial number (dilatancy). A typical relation is an affine law (Andreotti et al. 2013;
Da Cruz et al. 2005)

φ(I ) =φc − (φc −φm)I , (5.12)

where φc > φm are two constants (φc can be interpreted as the maximal volume
fraction). This law has been validated with numerical simulations when I < 1 (Da
Cruz et al. 2005 in the case of a plane shear, see also for instance Faug, Beguin, et al.
2009, figure 2.b and Rincón 2024, figure 3.15b for the case of a free surface flow on
an inclined plane) but gives a negative volume fraction for greater values of I , which
is not admissible. Deviations to this affine law were observed when I ≥ 1 by Faug,
Beguin, et al. 2009 (figure 2.b). In the following, we will only assume that φ is a given
decreasing and positive function of I . As a consequence, the relation φ=φ(I ) can be
inverted to obtain the inertial number from the volume fraction: I = I (φ). Note that
the stress tensor can be expressed with the only help of the two variables φ and v :

σ=−p(φ, |S|)Id +µ[I (φ)]p(φ, |S|) S

|S| , with p(φ, |S|) = ρp
d 2|S|2
I (φ)2

. (5.13)

A slightly more general version was considered by Nott 2009; Trulsson et al. 2013; Hey-
man et al. 2017, with a bulk friction coefficient µv (φ), associated to volume changes:

σ=−p(φ, |S|)Id +µ[I (φ)]p(φ, |S|) S

|S| +2µv (φ)p(φ, |S|)div(v )

|S| Id. (5.14)

The advantage of considering an additional bulk friction coefficient is that the equa-
tions become well-posed (i.e. there is no Hadamard instability) as soon as

µv (φ) > 1−7µ[I (φ)]/6 (5.15)

(Heyman et al. 2017). Furthermore, the energy dissipation is always negative (i.e.
σ : γ̇ < 0, for any value of |S| and div(v)), if and only if µv (φ)µ[I (φ)] > 1/8, as noted
by Goddard et al. 2018. However, if the bulk friction coefficient µv is used, it is an
additional parameter of the model. Hence a precise value is needed for applications.
This value could be estimated empirically through experimental measurements, as
it was done for the µ(I ) curve. To the best of our knowledge, the precise value of this
coefficient is not known. Furthermore, if one uses a bulk friction coefficient different
from zero, the pressure cannot be defined with the only variables φ and |S|, and a
dependence on div(v ) has to be added (Heyman et al. 2017). Thus in the definition of
the inertial number (5.7), the pressure p has to be replaced by the expression p(φ, |S|)
(5.13), which was called the equilibrium pressure by Heyman et al. 2017. For these
reasons, we choose to present here the derivation in the case µv = 0. However, as it is
shown in appendix 7.1, the addition of a bulk friction coefficient in the constitutive
equations only results in adding terms that are of order O(ε2) in the shallow water
asymptotic, as soon as the bulk friction coefficient µv is at most of order O(1) with
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respect to ε. Thus the derivation presented here and the model obtained are consistent
with the general rheology (5.14), whatever the value of the bulk friction coefficient.

We denote by z the coordinate in the direction normal to the inclined plane and by
x the coordinate in the direction parallel to the inclined plane (see Figure 5.1). The
components of the velocity v are u and w in the x-direction and in the z-direction
respectively.

Figure 5.1. – Definition sketch.

The system (5.2) admits an energy balance equation. The mechanical energy density
E of the fluid is equal to the sum of the kinetic energy density and the gravitational
potential energy density:

E = 1

2
ρ|v |2 −ρg x sinθ+ρg z cosθ. (5.16)

The energy balance equation is then

∂E

∂t
+div(E v ) = div (σ) ·v . (5.17)

The granular fluid is assumed to be delimited downwards by the inclined plane
at z = 0, and a free surface upwards at z = h. The field h is a function of (t , x). For
any field f depending on the variable z, we write f (0) := f |z=0, and f (h) := f |z=h . We
denote by n(t , x) the unit vector normal to the free surface and pointing outward the
flow. It is given by

n = 1√
1+|∂h/∂x|2

(
−∂h

∂x
,1

)T

. (5.18)

We can now define the boundary conditions satisfied by the velocity:
– At z = 0, we assume a non-penetration condition given by

w(0) = 0, (5.19)
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as well as a no-slip condition, given by

u(0) = 0. (5.20)

– At z = h, the velocity drives the evolution of the free surface via the kinematic
boundary condition

∂h

∂t
+u(h)

∂h

∂x
= w(h). (5.21)

The dynamic boundary condition states that the normal stresses are continuous
across the free surface. The normal stress above the free surface is given by the
atmospheric pressure patm. Without loss of generality, this constant can be taken
equal to zero. This leads to the equation

σ(h) ·n = 0, (5.22)

which expands as 
τxz(h)+p(h)

∂h

∂x
−τxx(h)

∂h

∂x
= 0, (5.23a)

τzz(h)−p(h)−τxz(h)
∂h

∂x
= 0. (5.23b)

2.2. Dimensionless form of the equations
We write here all equations in a non-dimensional form. In order to do so, we denote,

for any field f , a corresponding dimensionless field by f̃ .
We assume here that the flow occurs at a typical horizontal scale L0, and a typical

vertical scale h0, such that ε= h0/L0 ≪ 1 is a small parameter. We also assume that
the horizontal velocity is of order u0, such that the Froude number

F = u0√
g h0

(5.24)

is of O(1), as it is the case for instance in the experiments performed by Pouliquen
1999b and Forterre and Pouliquen 2003. We introduce the following dimensionless
variables:

x̃ = x

L0
, z̃ = z

h0
, h̃ = h

h0
. (5.25)

The time and velocity are scaled according to the usual shallow-water scaling as

t̃ = t
u0

L0
, ũ = u

u0
, w̃ = w

εu0
, (5.26)

The dimensionless pressure, density and size of the beads are found by

p̃ = p

ρp g h0
, ρ̃ = ρ

ρp
=φ, d̃ = d

h0
. (5.27)
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We also scale the deviatoric stress tensor as

τ̃xx = τxx

ερp g h0
, τ̃zz = τzz

ερp g h0
, τ̃xz = τxz

ρp g h0
(5.28)

and the traceless strain-rate tensor and energy as

|S̃| = |S|h0

u0
, Ẽ = E

ρp u2
0

. (5.29)

We obtain for the dimensionless deviatoric stresses

τ̃xx =µ(I )
p̃

|S̃|

(
∂ũ

∂x̃
− ∂w̃

∂z̃

)
=−τ̃zz , τ̃xz =µ(I )

p̃

|S̃|

(
∂ũ

∂z̃
+ε2∂w̃

∂x̃

)
. (5.30)

with

I = |S̃|d̃√
p̃

F, (5.31)

and

|S̃| =
[(
∂ũ

∂z̃
+ε2∂w̃

∂x̃

)2

+ε2
(
∂ũ

∂x̃
− ∂w̃

∂z̃

)2]1/2

. (5.32)

The dimensionless energy reads

Ẽ = 1

2
φ

(
ũ2 +ε2w̃ 2)− φsinθ

εF 2
x̃ + φcosθ

F 2
z̃. (5.33)

The equation of mass conservation stays true for the new variables:

∂φ

∂t̃
+ ∂φũ

∂x̃
+ ∂φw̃

∂z̃
= 0. (5.34)

The momentum equation in the x-direction becomes

∂φũ

∂t̃
+ ∂φũ2

∂x̃
+ ∂φũw̃

∂z̃
= φsinθ

εF 2
− 1

F 2

∂p̃

∂x̃
+ ε

F 2

∂τ̃xx

∂x̃
+ 1

εF 2

∂τ̃xz

∂z̃
. (5.35)

In the z-direction, we obtain

ε2
(
∂φw̃

∂t̃
+ ∂φũw̃

∂x̃
+ ∂φw̃ 2

∂z̃

)
=−φcosθ

F 2
− 1

F 2

∂p̃

∂z̃
+ ε

F 2

∂τ̃xz

∂x̃
+ ε

F 2

∂τ̃zz

∂z̃
. (5.36)

The energy equation (5.17) gives

∂Ẽ

∂t̃
+div

(
Ẽ ṽ

)= 1

F 2

[
ũ

(
ε
∂τ̃xx

∂x̃
+ 1

ε

∂τ̃xz

∂z̃
− ∂p̃

∂x̃

)
+ w̃

(
ε
∂τ̃xz

∂x̃
+ε∂τ̃zz

∂z̃
− ∂p̃

∂z̃

)]
, (5.37)

where we denoted by ṽ the dimensionless velocity field.
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Finally, we can rewrite the boundary conditions. For the velocity, we obtain

ũ(0) = 0, w̃(0) = 0,
∂h

∂t
+ ũ(h̃)

∂h̃

∂x̃
= w̃(h̃). (5.38)

Equations (5.23) become in the new variables
τ̃xz(h̃)+εp̃(h̃)

∂h̃

∂x̃
−ε2τ̃xx(h̃)

∂h̃

∂x̃
= 0, (5.39a)

ετ̃zz(h̃)− p̃(h̃)−ετ̃xz(h̃)
∂h̃

∂x̃
= 0. (5.39b)

3. Asymptotic expansion up to the first order
We now make the hypothesis that every variable f of the problem admits an asymp-

totic expansion as
f = f (0) +ε f (1) +O(ε2). (5.40)

We thus write such an expansion for every dimensionless variable of the problem.
Injecting these expansions into the mass conservation law (5.34), the momentum
balance equations (5.35)–(5.36) and the constitutive law (5.30), taking into account
the boundary conditions, we can compute explicitly all terms in the expansions up to
order 1.

3.1. Order 0
At leading order, we obtain from Equations (5.35), (5.36), (5.39) the following rela-

tions:

0 = φ(0) sinθ

F 2
+ 1

F 2

∂τ̃(0)
xz

∂z̃
, (5.41)

0 =−φ
(0) cosθ

F 2
− 1

F 2

∂p̃

∂z̃

(0)

(5.42)

0 = τ̃(0)
xz (h̃), (5.43)

0 = p̃(0)(h̃). (5.44)

We integrate the first two equations between z̃ and h̃ using the conditions at z̃ = h̃ to
obtain

τ̃(0)
xz = sinθ

∫ h̃

z̃
φ(0)dz̃ (5.45)

and

p̃(0) = cosθ
∫ h̃

z̃
φ(0)dz̃. (5.46)
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Equation (5.32) gives, after using equation (5.30) implying that ∂ũ(0)/∂z̃ > 0,

|S̃|(0) = ∂ũ(0)

∂z̃
. (5.47)

Equation (5.30) then gives
τ̃(0)

xz =µ(0)p̃(0) (5.48)

with µ(0) =µ(I (0)). We have µ(0) = τ(0)
xz /p(0). This yields

µ(0) = tanθ. (5.49)

At order 0, the friction coefficient has the same expression as in the case of a steady
uniform flow. The expression of the inertial number at order 0 is

I (0) = tanθ−µ1

µ2 − tanθ
Im (5.50)

by (5.10). Hence the inertial number at order 0, I (0), is a constant. It follows that it is
also the case for the volume fraction:

φ(0) =φ(I (0)) (5.51)

is constant. We deduce that

τ̃(0)
xz =φ(0) sinθ(h̃ − z̃) (5.52)

and
p̃(0) =φ(0) cosθ(h̃ − z̃). (5.53)

The pressure is thus hydrostatic at this order. We also obtain from Equation (5.34) that,
at order 0, the flow is incompressible:

∂ũ(0)

∂x̃
+ ∂w̃ (0)

∂z̃
= 0. (5.54)

As a consequence, the formulas obtained in the context of the incompressible rheology
(see for instance the work of Deleage and Richard 2025) are still valid at order 0 for this
version of the compressible µ(I )-rheology. We deduce that

ũ(0) = 2Ã

3

[
h̃3/2 − (

h̃ − z̃
)3/2

]
, (5.55)

where we defined

Ã = I (0)

d̃F

√
φ(0) cosθ, and A =

I (0)
√
φ(0)g cosθ

d
. (5.56)
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At order 0, the velocity profile in the z-direction is a Bagnold profile. At this order, the
depth-averaged velocity is Ũ (0) = 2Ãh̃3/2/5. If the characteristic velocity u0 and the
vertical scale h0 are taken equal respectively to the depth-averaged velocity and depth
of the steady uniform flow, then Ã = 5/2. We also have

w̃ (0) = Ã

[
2

3
h̃3/2 − 2

3

(
h̃ − z̃

)3/2 − z̃h̃1/2
]
∂h̃

∂x̃
. (5.57)

and

τ̃(0)
xx =−τ̃(0)

zz = 2φ(0) sinθ
[

h̃1/2 (
h̃ − z̃

)1/2 − h̃ + z̃
] ∂h̃

∂x̃
. (5.58)

We refer to the work of Deleage and Richard 2025 for detailed computations.

3.2. Order 1
We now investigate Equations (5.35), (5.36) and (5.39) at the first order. At this order

of accuracy, these equations become

∂ũ

∂t̃

(0)

+ ũ(0)∂ũ

∂x̃

(0)

+ w̃ (0)∂ũ

∂z̃

(0)

= φ(1) sinθ

φ(0)F 2
− 1

φ(0)F 2

∂p̃

∂x̃

(0)

+ 1

φ(0)F 2

∂τ̃(1)
xz

∂z̃
, (5.59)

0 =−φ(1) cosθ− ∂p̃

∂z̃

(1)

+ ∂τ̃xz

∂x̃

(0)

+ ∂τ̃zz

∂z̃

(0)

(5.60)

0 = τ̃(1)
xz (h̃)+ p̃(0)(h̃)

∂h̃

∂x̃
, (5.61)

0 = τ̃(0)
zz (h̃)− p̃(1)(h̃)− τ̃(0)

xz (h̃)
∂h̃

∂x̃
, (5.62)

where we used the fact that the flow is incompressible at order 0 to rewrite the conser-
vative term of (5.59) as a transport term. In view of the values of τ̃(0)

xz (h̃), τ̃(0)
zz (h̃) and

p̃(0)(h̃) (see (5.52), (5.58) and (5.53)), we obtain from the two last equations

τ̃(1)
xz (h̃) = p̃(1)(h̃) = 0. (5.63)

We inject the values of ũ(0), w̃ (0) and p̃(0), using Equation (5.38) to express ∂h̃/∂t̃ at
the leading order as ∂h̃/∂t̃ =−Ãh̃3/2∂h̃/∂x̃, to obtain

∂τ̃(1)
xz

∂z̃
=φ(0)∂h̃

∂x̃

[
cosθ+ F 2 Ã2

3

(
h̃1/2(h̃ − z̃)3/2 − h̃2)]−φ(1) sinθ. (5.64)

We now inject the values of τ̃(0)
xz and τ̃(0)

zz into the second equation. We find

∂p̃

∂z̃

(1)

=φ(0) sinθ
∂h̃

∂x̃

[
h̃1/2(

h̃ − z̃
)1/2

−1

]
−φ(1) cosθ. (5.65)

We thus need to compute φ(1). The relations φ=φ(I ) and I = I (µ) (see (5.10)) imply
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that φ can be seen as a function of µ only. See for instance Fall et al. 2015 for an
experimental study of the relation φ=φ(µ). It follows that

φ(1) =−Dφ(0)µ(1), (5.66)

where D =−(∂ lnφ/∂µ)(µ= tanθ) or

D =− 1

φ(0)

∂φ

∂I
(I = I (0))Im

µ2 −µ1

(µ2 − tanθ)2
. (5.67)

For instance, if the affine law (5.12) is used, one obtains for D the following value:

D = φc −φm

φ(0)
Im

µ2 −µ1

(µ2 − tanθ)2
. (5.68)

Similarly, one can deduce the expression of the first-order correction to the inertial
number, writing

I (1) = ∂I

∂µ

∣∣∣∣
µ(0)

µ(1), (5.69)

to find
I (1) = Im

µ2 −µ1(
µ2 − tanθ

)2µ
(1). (5.70)

We can write
I (1) = B I (0)µ(1) (5.71)

where B = (∂ ln I /∂µ)(µ= tanθ) or

B = µ2 −µ1

(µ2 − tanθ)(tanθ−µ1)
. (5.72)

We also obtain from (5.32)

|S̃|(1) = ∂ũ

∂z̃

(1)

. (5.73)

By Equations (5.30) and (5.47), (5.73), we also have that

τ̃(1)
xz =µ(1)p̃(0) +µ(0)p̃(1). (5.74)

We differentiate this last relation with respect to z̃ (recall that µ(0) is constant):

∂τ̃(1)
xz

∂z̃
= ∂

∂z̃

(
p̃(0)µ(1))+µ(0)∂p̃

∂z̃

(1)

.

By injecting the values of p̃(0) and the z̃-derivatives of p̃(1) and τ̃(1)
xz that we computed

before, we obtain that µ(1) solves

∂

∂z̃

[
(h̃ − z̃)µ(1)]= ∂h̃

∂x̃

[
1+ tan2θ+ F 2 A2

3cosθ

(
h̃1/2(h̃ − z̃)3/2 − h̃2)− tan2θh̃1/2

(h̃ − z̃)1/2

]
.
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We integrate between z̃ and h̃ (note that (5.74) and (5.63) implies that (p̃(0)µ(1))(h̃) = 0)
to get that the first-order correction to the friction coefficient can be written as

µ(1) = ∂h̃

∂x̃

[
F 2 A2

3cosθ

(
h̃2 − 2h̃1/2

5
(h̃ − z̃)3/2

)
+ 2tan2θh̃1/2

(h̃ − z̃)1/2
− 1

cos2θ

]
, (5.75)

and , with (5.66),

φ(1)

φ(0)
=−Dµ(1) =−D

∂h̃

∂x̃

[
F 2 A2

3cosθ

(
h̃2 − 2h̃1/2

5
(h̃ − z̃)3/2

)
+ 2tan2θh̃1/2

(h̃ − z̃)1/2
− 1

cos2θ

]
.

(5.76)
We deduce that∫ h̃

z̃
φ(1) =−φ(0)D

∂h̃

∂x̃

[
F 2 A2

3cosθ

(
h̃2(h̃ − z̃)− 4h̃1/2

25
(h̃ − z̃)5/2

)
+4tan2θh̃1/2(h̃ − z̃)1/2 − h̃ − z̃

cos2θ

]
. (5.77)

We can now integrate (5.64) between z̃ and h̃ to obtain

τ̃(1)
xz =φ(0)∂h̃

∂x

[
−4D sinθ tan2θh̃1/2(h̃ − z̃)1/2 − (h̃ − z̃)

(
cosθ− D sinθ

cos2θ

)
(5.78)

+F 2 A2

3

(
h̃2(h̃ − z̃)(1−D tanθ)− 2

5
h̃1/2(h̃ − z̃)5/2(1− 2

5
D tanθ)

)]
We now use (5.74) to calculate the expression of the first-order correction to the
pressure as p̃(1) = (τ̃(1)

xz −µ(1)p̃(0))/µ(0), i.e.

p̃(1) =φ(0)∂h̃

∂x

[(
−4D − 2

tanθ

)
sin2θ

cosθ
h̃1/2(h̃ − z̃)1/2 − (h̃ − z̃)

( −D

cosθ
− sinθ

)
(5.79)

−DF 2 A2

3

(
h̃2(h̃ − z̃)− 4

25
h̃1/2(h̃ − z̃)5/2

)]
.

Equations (5.79), (5.71), (5.73) and (5.53) can be used to obtain

∂ũ

∂z̃

(1)

=A
∂h̃

∂x̃

[(
−2D +2B − 1

tanθ

)
tan2θh̃1/2 − (h̃ − z̃)

2

1/2 ( −D

cos2θ
+ 2B

cos2θ
− tanθ

)
−DF 2 A2

6cosθ

(
h̃2(h̃ − z̃)1/2 − 4

25
h̃1/2(h̃ − z̃)2

)
+B

F 2 A2

3cosθ

(
h̃2(h̃ − z̃)1/2 − 2h̃1/2

5
(h̃ − z̃)2

)]
.
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We integrate this expression between 0 and z̃ and obtain that

ũ(1) =A
∂h̃

∂x̃

[(
−2D +2B − 1

tanθ

)
tan2θh̃1/2z̃ − h̃3/2 − (h̃ − z̃)

3

3/2 ( −D

cos2θ
+ 2B

cos2θ
− tanθ

)
(5.80)

− DF 2 A2

9cosθ

(
h̃2(h̃3/2 − (h̃ − z̃)3/2)− 2h̃3 −2(h̃ − z̃)3

25
h̃1/2

)
+B

2F 2 A2

9cosθ

(
h̃2(h̃3/2 − (h̃ − z̃)3/2)− h̃3 − (h̃ − z̃)3

5
h̃1/2

)]
.

which is the consistent first-order correction to the Bagnold velocity profile.

4. Derivation of the depth-averaged equations

4.1. Averaged variables
We now define depth-averaged variables, and give an explicit asymptotic expansion

of these variables up to the first order. The total mass over the depth m is defined by

m =
∫ h

0
ρdz. (5.81)

This quantity is sometimes also called the "mass hold-up" in the literature (see for
instance P. C. Johnson et al. 1990; Louge et al. 2001; Holyoake et al. 2012). It enables to
define the averaged volume fraction by

φ̄= 1

h

∫ h

0
φdz = m

ρp h
. (5.82)

We see that the variable m has an important physical meaning in the compressible
case. Indeed, to the same value of h can correspond various values of φ̄. The mass
hold-up is scaled by m = m̃ρp h0. It follows that

m̃(0) =φ(0)h̃ (5.83)

and

m̃(1) =−φ(0)D
∂h̃

∂x̃

(
7F 2 A2

25cosθ
h̃3 + (3tan2θ−1)h̃

)
. (5.84)

In order to simplify the equations, we also introduced the normalised hold-up as

r =
∫ h

0

ρ

ρ(0)
dz, with ρ(0) = ρpφ

(0). (5.85)
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It follows that m/ρp = φ(0)r = φ̄h. r has the dimension of a length and is scaled as
r = h0r̃ . We have that

r̃ (0) = h̃ (5.86)

and

r̃ (1) =−D
∂h̃

∂x̃

(
7F 2 A2

25cosθ
h̃3 + (3tan2θ−1)h̃

)
. (5.87)

The Favre averaging over the depth of any quantity X is then defined as

〈X 〉 = 1

m

∫ h

0
ρX dz = 1

r

∫ h

0

ρ

ρ(0)
X dz = 1

r

∫ h

0

φ

φ(0)
X dz. (5.88)

To lighten the notation, the depth-averaged velocity is denoted by U = 〈u〉. The
average velocity Ũ admits an asymptotic expansion given by

Ũ = Ũ (0) +εŨ (1) +O(ε2), (5.89)

where, by (5.55),

Ũ (0) = 2

5
Ãh̃3/2, (5.90)

and, from (5.80), after some computations,

Ũ (1) =∂h̃

∂x̃

F 2 A3

25cosθ
A1h̃7/2 + A

5

∂h̃

∂x̃
A2h̃3/2, (5.91)

with

A1 =−17

10
D + 5

2
B (5.92)

and

A2 =− (
6tan2θ−1

)
D +B(3tan2θ−2)− 3

2
tanθ, (5.93)

Note that from the expressions of Ũ (0) and r̃ (0), one can deduce the relation

Ũ (0) = 2

5
A

(
r̃ (0))3/2

. (5.94)

Hence we obtain the following expansion:

Ũ − 2

5
Ar̃ 3/2 = ϵ

(
Ũ (1) − 3

5
Ah̃3/2 r̃ (1)

r̃ (0)

)
+O(ϵ2). (5.95)

We compute that the first-order term in (5.95) is given by

Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)
= Ã(B +D)

10

∂h̃

∂x̃

[
F 2 Ã2

cosθ
h̃7/2 + (3C −4)h̃3/2

]
, (5.96)
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where, to simplify notations, we defined

C = tanθ

(
2tanθ− 1

B +D

)
. (5.97)

Note that C = C (θ) is a positive function of θ, which takes values in the interval
[2µ2

1 ,2µ2
2 ] if θ ∈ [arctanµ1,arctanµ2]. Indeed, since by assumption D > 0, we have the

following bounds for C :

tan2θ+ tanθ

[
(tanθ−µ1)2

µ2 −µ1
+µ1

]
= tanθ

(
2tanθ− 1

B

)
<C < 2tan2θ. (5.98)

The definition of the constant C can be seen as a generalisation of the one given
by Deleage and Richard 2025 in the incompressible case. Indeed, it reduces to that
definition (see equation (4.4) of chapter 3) when φ is constant, i.e. when D = 0
(see (5.67)). When D = 0, the expression of C corresponds to the left-hand side of
(5.98). It is also interesting to note that the expression (5.96) was already obtained
in the incompressible case. Surprisingly, the first order correction induced by the
introduction of dilatancy in the constitutive equations can be taken into account
in a very simple way. Indeed, it is enough to use the expression obtained in the
incompressible case (see equation (3.78) of chapter 3) and replace the constant B by
the modified version B +D .

Note that the first-order correction (5.95) can be written

Ũ (1) − 3

5
Ah̃3/2 r̃ (1)

r̃ (0)
= 1

ε

(
Ũ − 2

5
Ãr̃ 3/2

)
+O(ε), (5.99)

We also define a quantity, called enstrophy, as ψ = 〈
(u −U )2

〉
/r 2. The enstrophy

takes shear effects into account. It is zero for a velocity constant in the depth and
positive otherwise. The enstrophy is scaled as ψ = ψ̃u2

0/h2
0. With this definition,

r̃
〈

ũ2
〉= r̃Ũ 2 + r̃ 3ψ̃. Similarly, ψ̃ expands as ψ̃= ψ̃(0) +εψ̃(1) +O(ε2), where

ψ̃(0) = Ã2h̃

25
(5.100)

is the consistent expression of the enstrophy for a Bagnold profile, and

ψ̃(1) = ∂h̃

∂x̃

F 2 A3

25cosθ
A3h̃3 + ∂h̃

∂x̃

A

5
A4h̃, (5.101)

with

A3 := Ã

[
73

275
D + 6

11
B

]
(5.102)

and

A4 :=Ã

[(
1

7
tan2θ− 1

5

)
D +B

(
13

35
tanθ

(
2tanθ− 1

B

)
− 2

5

)]
. (5.103)
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At leading order, the enstrophy and the depth-averaged velocity satisfy the relation

ψ̃(0) = (Ũ (0))2

4(r̃ (0))2
. (5.104)

Note that this expression gives at leading order r 〈(u(0))2〉 = (5/4)r (U (0))2. This is
consistent with the shape factor 5/4 which is obtained for a Bagnold velocity profile.

The relation (5.104) leads to the expansion

ψ̃− Ũ 2

4r̃ 2
= ϵ

(
ψ(1) − Ũ (0)Ũ (1)

2(r̃ (0))2
+ r̃ (1)(Ũ (0))2

2(r̃ (0))3

)
+O(ϵ2). (5.105)

The leading term of (5.105) can be computed with Equations (5.101) and (5.96). We
obtain

ψ̃(1) − Ũ (0)Ũ (1)

2(r̃ (0))2
+ r̃ (1)(Ũ (0))2

2(r̃ (0))3
= Ã2(B +D)

10

∂h̃

∂x̃

(
F 2 Ã2

55cosθ
h̃3 + C

7
h̃

)
. (5.106)

This expression is useful to write consistently a relaxation term for the enstrophy.
Again, the only difference with the incompressible case is that the constant B of
equation (3.83) of chapter 3 has been replaced by B +D in the right-hand side of
(5.106).

4.2. Depth-averaged mass and momentum equations
We now want to derive evolution equations for the depth-averaged variables. We

first integrate the mass conservation (5.34) between 0 and h̃. Using the kinematic
boundary condition (5.38), we obtain the depth-averaged mass conservation equation

∂m̃

∂t̃
+ ∂m̃Ũ

∂x̃
= 0, (5.107)

which can also be written with the variable r as

∂r̃

∂t̃
+ ∂r̃Ũ

∂x̃
= 0. (5.108)

In order to derive an equation for Ũ , we integrate (5.35) between 0 and h̃ using
the boundary condition (5.38). This leads to a preliminary expression of the depth-
averaged momentum balance equation

∂r̃Ũ

∂t̃
+ ∂

∂x̃

(
r̃Ũ 2 + r̃ 3ψ̃+ 1

φ(0)F 2

∫ h̃

0
p̃dz̃

)
= 1

εφ(0)F 2

(
φ(0)r̃ sinθh̃ − τ̃xz(0)

)+O(ε).

(5.109)
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We first compute the integral of the pressure p̃. By using the expression (5.53) of p̃(0),
we obtain

1

φ(0)

∫ h̃

0
p̃dz̃ = 1

φ(0)

∫ h̃

0
p̃(0)dz̃ +O(ε) = r̃ 2 cosθ

2
+O(ε). (5.110)

Equation (5.109) thus yields

∂r̃Ũ

∂t̃
+ ∂

∂x̃

(
r̃Ũ 2 + r̃ 3ψ̃+ r̃ 2 cosθ

2F 2

)
= 1

εφ(0)F 2

(
φ(0)r̃ sinθ− τ̃xz(0)

)+O(ε). (5.111)

We now need to find an expression for the basal friction τ̃xz(0). For an incompress-
ible flow with constant volume fraction, the basal friction can be written τ̃xz(0) =
µb,iφh̃ cosθ (Andreotti et al. 2013) where

µb,i =µ1 + µ2 −µ1

Im

2h̃
√
φh̃ cosθ

5d̃FŨ
+1

. (5.112)

This expression cannot be used directly in the compressible case. Indeed, whereas
the volume fraction φ is constant for an incompressible flow, it is not true anymore in
the compressible case (see (5.66) for instance). The letter φ is thus ambiguous here,
as it could correspond to the volume fraction at equilibrium φ(0), to the averaged
volume fraction φ̄ or to the volume fraction at the bottom φ(0) for instance. Hence
some choices have to be made here. For a compressible granular flow, we propose the
following generalisation:

µb,iφh̃ cosθ→ ξµbφ
(0)r̃ cosθ, (5.113)

where
µb =µ1 + µ2 −µ1

Im

2r̃
√
φ(0)r̃ cosθ

5d̃FŨ
+1

(5.114)

is the generalisation of the friction law µb,i and

ξ= exp

[
− 5D

2Ãr̃ 3/2B(B +D) tanθ

(
U − 2Ã

5
r̃ 3/2

)]
(5.115)

is a factor modelling dilatancy. Let us make a few qualitative comments in order to
motivate these choices:

— The product φh̃ cosθ, corresponding to the dimensionless basal normal stress in
the incompressible case, is replaced by φ(0)r̃ cosθ = m̃ cosθ in the compressible
case, both in factor of the friction law and inside the expression of µb .

— The remaining dependence on h̃ of the friction law µb,i is removed by replacing
h̃ by r̃ . This means that the basal friction µb only depends on the velocity and
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on the mass hold-up, corresponding to the (normalised) mass of the granular
column. Recall that at equilibrium, it holds that φ̄ = φ(0), hence r̃ = h̃ and we
recover the friction law of Andreotti et al. 2013.

— The factor ξ is taking dilatancy into account. For an incompressible flow (D = 0)
or at equilibrium (Ũ = Ũ (0) and r̃ = m̃(0)), it is equal to 1. When the mean velocity
is greater than the velocity at equilibrium, ξ < 1. On the contrary, when U is
smaller than its value at equilibrium, ξ > 1. It follows that the increasing of
the basal friction with the mean velocity is still true in the compressible case,
but is slightly attenuated compared to the incompressible case, because of this
corrective factor. Note that ξ is only a first-order correction to the friction law,
hence this attenuation effect stays small close to stationary and uniform flows.
As it is shown hereafter, the exponential function appearing in (5.115) could be
replaced by any function f such that f (0) = 1 and f ′(0) = 1, without any loss of
consistency. This means that close to a stationary uniform flow, any choice of f
with f (0) = f ′(0) = 1 would yield similar results. However, changing the function
f could drastically affect the behaviour far from stationary uniform flows. We
choose here f = exp to guarantee the positivity of the modified friction coeffi-
cient, but other choices are possible and a further study, including comparison
with experimental data in non stationary and non uniform regimes, would be
needed to obtain an expression of ξ which stays valid far from steady uniform
flows.

Let us now justify mathematically the formula (5.113). We will show by an exact
expansion up to order 1 that it enables to recover the same structure that was derived
in the incompressible case by Deleage and Richard 2025. The expression (5.114) can
be written

µb =µ1 + µ2 −µ1

Im

I (0)

(
r̃

r̃ (0)

)3/2 Ũ (0)

Ũ
+1

(5.116)

which means thatµb =µ[I = I (0)(r̃ (0)/r̃ )3/2Ũ /Ũ (0)] such thatµ(0)
b =µ(0). The expansion

of µb gives

µb =µ(0) +ε ∂µ
∂I

∣∣∣∣
I (0)

I (0)

Ũ (0)

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
+O(ε2) (5.117)

which can be written as

µb =µ(0) +ε 1

BŨ (0)

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
+O(ε2). (5.118)

Similarly, the factor ξ can be written as

ξ= exp

[
− D

Ũ (0)B(B +D)µ(0)

(
Ũ

(
r̃ (0)

r̃

)3/2

−Ũ (0)

)]
, (5.119)
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which yields

ξ= 1−ε D

Ũ (0)B(B +D)µ(0)

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
+O(ε2). (5.120)

Note that the expansion (5.120) still holds if the exponential function appearing in the
definition of ξ is replaced by any function f with f (0) = f ′(0) = 1. The product ξµb

can be expanded as

ξµb = ξ(0)µ(0)
b +ε

(
ξ(1)µ(0)

b +ξ(0)µ(1)
b

)
+O(ε2), (5.121)

which yields

ξµb =µ(0) +ε 1

(B +D)Ũ (0)

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
+O(ε2). (5.122)

In particular, we get that (ξµb)(0) = µ(0), which means that the generalized friction
law is consistent at order 0 with the µ(I )-rheology (i.e. τ̃(0)

xz (0) = φ(0)(ξµb r̃ )(0) cosθ).
However, it is not the case at order one: τ̃(1)

xz (0) ̸= φ(0)(ξµb r̃ )(1) cosθ. Indeed, using
Equations (5.52), (5.53) and (5.78), the shear stress at the bottom can be written

τ̃xz(0) =µ(0)φ(0)r̃ (0) cosθ+εφ(0)∂h̃

∂x̃

(
F 2 Ã2

5
h̃3 − h̃ cosθ

)
+εφ(0)r̃ (1) sinθ+O(ε2). (5.123)

Subtracting ξµbφ
(0)r̃ cosθ from τ̃xz (0) leads to the expression of the first-order correc-

tion to the friction law

τ̃xz(0)−ξµbm̃ cosθ = εφ(0)R cosθ+O(ε2), (5.124)

where

R =−∂h̃

∂x̃

(
F 2 Ã2

20cosθ
h̃3 + 3C

4
h̃

)
. (5.125)

We see that the term R obtained is exactly the same as the one obtained in the incom-
pressible case (Deleage and Richard 2025). This means that all the dilatancy effects
coming from the rheology are encoded by the replacement of the variable h by r ,
the replacement of the constant B by B +D and the generalized friction law ξµb (up
to order 1). It is thus possible to treat the remaining term R as it was treated in the
incompressible case by Deleage and Richard 2025. Equation (5.111) can be written

∂r̃Ũ

∂t̃
+ ∂

∂x̃

(
r̃Ũ 2 + r̃ 3ψ̃+ r̃ 2 cosθ

2F 2

)
= r̃ cosθ

εF 2

(
tanθ−ξµb

)−R
cosθ

F 2
+O(ε). (5.126)

As in the incompressible case, we split R into two terms. The first term is written in
the left-hand side of Equation (5.126) as a flux, and the second term is written in the
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right-hand side and is expressed as a relaxation term. More precisely, after introducing

λ= 847(4−3C )

20(157C +84)
, (5.127)

we obtain, as in the incompressible case,

∂r̃Ũ

∂t̃
+ ∂

∂x̃

(
r̃Ũ 2 +βr̃ 3ψ̃+K

r̃ 2 cosθ

2F 2

)
= cosθ

εF 2

[
r̃ (tanθ−ξµb)+ 10λ

Ã2(B +D)

(
ψ̃− Ũ 2

4r̃ 2

)]
+O(ε),

(5.128)

where

β= 11

16
+ 5λ

44
, and K = 1− 3C

4
+ λC

7
. (5.129)

Equation (5.128) is consistent at the first order of accuracy. The first-order correction
to the usual granular friction law is written partly with the corrective factor ξ, partly as a
relaxation term in the right-hand side and partly in the momentum flux as corrections
to the hydrostatic pressure term (K ) and to the enstrophy term (β). The latter term
also models shearing effects in the granular flow. The structure of this equation is
similar to other models with enstrophy (Denisenko, Richard, et al. 2023 for example)
with an effective enstrophy equal to βψ. There is also a factor K in the hydrostatic
pressure term. Such a factor has already been introduced to model normal stresses
anisotropy (see for instance Savage et al. 1989). In the present case, the factor K
enables to guarantee consistency up to order 1 with the rheology and is not directly
linked with normal stresses anisotropy.

4.3. Depth-averaged energy equation
In order to close the system of equations obtained for h̃ and Ũ in the previous

section, we need to find an evolution equation for the variable ψ̃. Such an equation
can be obtained from the equation of energy (5.37). We first rewrite equation (5.37) as:

∂Ẽ

∂t̃
+div(Ẽ ṽ ) = 1

εF 2
ũ
∂τ̃xz

∂z̃
− ṽ ·∇p̃

F 2
+O(ε). (5.130)

The integration of Equation (5.130) between 0 and h̃, using the boundary condition
(5.38) gives

∂

∂t̃

(∫ h̃

0
Ẽ dz̃

)
+ ∂

∂x̃

(∫ h̃

0
Ẽ ũ dz̃

)
+

∫ h̃

0

ṽ ·∇p̃

F 2
= 1

εF 2

∫ h̃

0
ũ
∂τ̃xz

∂z̃
dz̃ +O(ε). (5.131)

We compute that

1

φ(0)

∫ h̃

0
Ẽ dz̃ = r̃Ũ 2

2
+ r̃ 3ψ̃

2
− r̃ x̃ sinθ

εF 2
+ r̃ 2

2F 2
+O(ε). (5.132)
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Similarly,

1

φ(0)

∫ h̃

0
Ẽ ũ dz̃ = r̃Ũ 3

2
+ 3r̃ 3ψ̃

2
+ r̃

〈
(ũ −Ũ )3

〉
2

− r̃Ũ x̃ sinθ

εF 2
+

∫ h̃

0

φũz̃ cosθ

φ(0)F 2
dz̃. (5.133)

In order to close the equations, we need a formula for the third-order correlation〈
(ũ −Ũ )3

〉
. Since we neglect second-order terms, it is consistent to replace this

term by the leading term in the asymptotic expansion, which is r̃
〈

(ũ −Ũ )3
〉(0) =

−4Ã3h̃11/2/1375. Hence

∂

∂x̃

∫ h̃

0

1

2

(
ũ(0) −Ũ (0))3

dz̃ =− Ã3h̃9/2

125

∂h̃

∂x̃
. (5.134)

This term is written in the right-hand side of the equation in order to obtain a model
with a well-posed and simple mathematical structure. We now use the fact that the
flow is incompressible at order 0, that p̃(h̃) =O(ε) and the non-penetration condition
to write that ∫ h̃

0

ṽ ·∇p̃

F 2
= ∂

∂x̃

(∫ h̃

0

ũp̃

F 2
dz̃

)
+O(ε). (5.135)

Equation (5.53) shows that, at order 0, we can write

p̃(0) +φ(0)z̃ cosθ =φ(0)h̃ cosθ. (5.136)

We can use this relation to write∫ h̃

0

ũ(p̃ + z̃ cosθ)

φ(0)F 2
dz̃ = r̃ 2Ũ cosθ

F 2
+O(ε). (5.137)

We can also use the mass conservation (5.108) to let appear the total work of the gravity
force as

∂

∂t̃

(
− r̃ x̃ sinθ

εF 2

)
+ ∂

∂x̃

(
− r̃Ũ x̃ sinθ

εF 2

)
=− r̃Ũ sinθ

εF 2
(5.138)

and put this term into the right-hand side of the depth-averaged energy equation. The
technical details of the treatment of the right-hand side of Equation (5.131) are given
in Appendix 7.2. The calculations are carried out to ensure compatibility between the
energy and momentum depth-averaged equations in order to obtain a well-posed
mathematical structure well suited to numerical resolution.

The final version of the energy equation can be written

∂

∂t̃

(
r̃

Ũ 2

2
+ βr̃ 3ψ̃

2
+K

r̃ 2 cosθ

2F 2

)
+ ∂

∂x̃

(
r̃Ũ 3

2
+ 3βr̃ 3Ũψ̃

2
+K

r̃ 2Ũ cosθ

F 2

)
= Ũ cosθ

εF 2

[
r̃ (tanθ−ξµb)+β α̃1

r̃ 1/2

(
Ũ − 2

5
Ãr̃ 3/2

)
+

(
βα̃2 + 10λ

Ã2(B +D)

)(
ψ̃− Ũ 2

4r̃ 2

)]
+O(ε)

(5.139)
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with

α̃1 =− 33C

2Ã(B +D)(34C +28)
, (5.140)

and

α̃2 = 77(9C −12)

2Ã2(B +D)(34C +28)
. (5.141)

As in the momentum equation, the effective enstrophy in this energy equation is βψ
and there is the same factor K in the pressure term and in the potential energy. The
right-hand side of this energy equation includes the power of the weight and of the
usual granular friction law (5.114) but there are a corrective factor ξ and additional
relaxation terms to obtain consistency at order 1.

The evolution equation for the variable ψ̃ can now be derived. In order to do this, the
equation of momentum (5.128) is multiplied by Ũ and this new equation is subtracted
from the equation of energy (5.139). This leads to

∂r̃ ψ̃

∂t̃
+ ∂r̃Ũψ̃

∂x̃
= 2Ũ cosθ

εr̃ 2F 2

[
α̃1

r̃ 1/2

(
Ũ − 2

5
Ãr̃ 3/2

)
+ α̃2

(
ψ̃− Ũ 2

4r̃ 2

)]
+O(ε). (5.142)

The evolution equation of the enstrophy is a transport equation with relaxation source
terms. The relaxation term onψ is important and usual for an enstrophy equation and
the coefficient α̃2 must be negative for the system to be mathematically well-posed
(otherwise the enstrophy diverges exponentially). This gives the condition C < 4/3,
which is similar to the one obtained by Deleage and Richard 2025. When compress-
ibility is taken into account in the definition of C , the condition C < 4/3 is satisfied for
a wider range of slopes. In some sense, the system obtained from the compressible
rheology is "more regular" than the one obtained from the incompressible rheology.
See also §5.4.

5. Model analysis

5.1. Hyperbolicity
In this section, we study some properties of the model obtained in Section 4 and

formed by the mass conservation equation (5.107), the momentum balance equation
(5.128) and the enstrophy equation (5.142). In dimensional form, this system reads

∂r

∂t
+ ∂rU

∂x
= 0,

∂rU

∂t
+ ∂

∂x

(
rU 2 +βr 3ψ+K

g r 2

2
cosθ

)
= g cosθ

[
r
(
tanθ−ξµb

)+ 10λ

A2(B +D)

(
ψ− U 2

4r 2

)]
,

∂rψ

∂t
+ ∂rUψ

∂x
= 2gU cosθ

r 2

[
α1

r 1/2

(
U − 2

5
Ar 3/2

)
+α2

(
ψ− U 2

4r 2

)]
,

(5.143)
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where the expressions of A, B , C , D , α1, α2 and φ(0) are

A = Im
tanθ−µ1

µ2 − tanθ

√
φ(0)g cosθ

d
, B = µ2 −µ1

(µ2 − tanθ)(tanθ−µ1)
, C = tanθ

(
2tanθ− 1

B +D

)
,

(5.144)

D =−∂ lnφ

∂µ
(µ= tanθ), α1 =− 33C

2A(B +D)(34C +28)
, α2 = 77(9C −12)

2A2(B +D)(34C +28)
,

(5.145)
and

φ(0) =φ
(

I = Im
tanθ−µ1

µ2 − tanθ

)
. (5.146)

The parameters λ, β and K are given by

λ= 847(4−3C )

20(157C +84)
, β= 11

16
+ 5λ

44
, K = 1− 3C

4
+ λC

7
, (5.147)

and the generalized basal friction ξµb is given by

ξ= exp

[
− 5D

2Ar 3/2B(B +D) tanθ

(
U − 2

5
Ar 3/2

)]
, (5.148)

and
µb =µ1 + µ2 −µ1

Im

2r 3/2
√
φ(0)g cosθ

5dU
+1

. (5.149)

The three characteristic velocities are

λ0 =U , λ± =U ±
√

K g r cosθ+3βr 2ψ. (5.150)

The system of equations (5.143) is hyperbolic if K > 0. It is in conservative form, with
relaxation source terms. For the final expression (5.127) of λ or for λ= 0, the condition
K > 0 is equivalent to the condition C < 4/3, which is also a condition for a well-posed
system (see above in §4.3) and which is discussed in §5.4. If K < 0, the hyperbolicity is
not guaranteed, which is not admissible.

The system admits the additional energy balance equation

∂r e

∂t
+ ∂

∂x
(rU e +ΠU )

=gU cosθ

[
r (tanθ−ξµb)+ βα1

r 1/2

(
U − 2

5
Ar 3/2

)
+

(
βα2 + 10λ

A2(B +D)

)(
ψ− U 2

4r 2

)]
(5.151)

where the specific energy is

e = U 2

2
+ βr 2ψ

2
+K

g r

2
cosθ (5.152)
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and

Π=βr 3ψ+K
g r 2

2
cosθ. (5.153)

The field associated to λ0 is linearly degenerate, hence the corresponding discon-
tinuities are called contact discontinuities. The discontinuities associated to the
eigenvalues λ± are shocks . Across a shock of speed s, the quantities q = r (U − s) (con-
servation of mass) and ψ (conservation of enstrophy) are continuous. Furthermore,
the jump of height h is constrained by the shock relation

q2
[

1

r

]
+βψ[

r 3]+ K g cosθ

2

[
r 2]= 0, (5.154)

where the notation [ f ] stands for the jump of the quantity f .
It is important to note that the third equation of the system is the enstrophy equation

and not the energy equation. This implies that, through a discontinuity, the enstrophy
is conserved and the energy is dissipated. In the framework of hyperbolic systems of
conservation laws, the energy is the mathematical entropy of the system.

5.2. Formula for the height and reconstruction of the velocity
field

System (5.143) is written in terms of the three variables (r,U ,ψ). However, for
comparison with experiments, it is useful to know the free surface h. We state here a
formula which expresses h in terms of the variables (r,U ,ψ) with the same accuracy
as the model. To do so, we first express the height as

h̃ = r̃ (0). (5.155)

Since r̃ (0) = r̃ −εr̃ (1) +O(ε2), it follows that h̃ = r̃ −εr̃ (1) +O(ε2). From the equations
(5.84), (5.96) and (5.106), we can express r̃ (1) as

r̃ (1) =− 10D

Ã(B +D)

[
γ1

h̃1/2

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
+ γ2

Ã

(
ψ(1) − Ũ (0)Ũ (1)

2(r̃ (0))2
+ r̃ (1)(Ũ (0))2

2(r̃ (0))3

)]
(5.156)

with

γ1 =−7(15tan2θ−11C −5)

10(17C +14)
, γ2 = 231(25tan2θ−7C +1)

10(17C +14)
. (5.157)

With equations (5.95) and (5.105), it follows that, up to second order terms,

h̃ = r̃ exp

{
10D

r̃ Ã(B +D)

[
γ1

r̃ 1/2

(
Ũ − 2

5
Ãr̃ 3/2

)
+ γ2

Ã

(
ψ̃− Ũ 2

4r̃ 2

)]}
. (5.158)
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Reverting to dimensional quantities, we get

h = r exp

{
10D

r A(B +D)

[
γ1

r 1/2

(
U − 2

5
Ar 3/2

)
+ γ2

A

(
ψ− U 2

4r 2

)]}
. (5.159)

As for the corrective factor ξ, the exponential function appearing in the formula of the
reconstructed h can be substituted by any function f such that f (0) = f ′(0) = 1. The
choice f = exp guarantees that the reconstructed height is positive, for any values of
(r,U ,ψ). Another possible choice is

f (x) = 1

φc

[
φ(0) + (φc −φ(0))exp

(
φc

φc −φ(0)
x

)]
. (5.160)

This last expression yields an averaged volume fraction φ̄=φ0r /h which stays between
0 and φc (see (5.82)). Close to stationary uniform flows, the two expressions are
equivalent. A further study is necessary in order to obtain a reconstruction which
stays valid far from steady uniform flows.

Since the model is derived consistently from the asymptotic expansions of the
flow variables, it is also possible to reconstruct the 2D-fields and, in particular, the
variations of the velocity profiles in the depth, from the values of the depth-averaged
quantities calculated with the 1D-depth-averaged model. These profiles are calculated
at the same accuracy as the model. In the following, we show how to reconstruct in a
consistent way the horizontal velocity field from the solution of (5.143), i.e. from the
triplet (r,U ,ψ).

Reverting to the dimensionless quantities, the expressions of ũ(0) at equilibrium
(5.55) and of the averaged velocity Ũ (0) (5.90) lead to

ũ(0) = f (z)Ũ (0), (5.161)

where

f (z) = 5

3

[
1−

(
1− z

h

)3/2
]

(5.162)

is the normalised Bagnold profile. From this relation, we deduce that an approxima-
tion of ũ at order 0 is given by ũ = f (z)Ũ +O(ε). In order to have an approximation of
order 1, we expand

ũ = f (z)Ũ +ε(
ũ(1) − f (z)Ũ (1))+O(ε2). (5.163)

Thus we can obtain a consistent expression for ũ by expressing consistently ũ(1) −
f (z)Ũ (1) as a function of (h̃,Ũ ,ψ̃). After using (5.80) and (5.91) and some computa-
tions, we obtain

ũ(1) − f (z)Ũ (1) = Ã
∂h̃

∂x̃

[
h̃3/2g1(z)+ h̃7/2 F 2 Ã2

cosθ
g2(z)

]
, (5.164)
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where

g1(z) = z

h

(
2B −2D − 1

tanθ

)
tan2θ− f (z) tan2θ

(
B − 7D

5
− 1

2tanθ

)
(5.165)

and

g2(z) =
(

B

6
− D

150

)
f (z)

5
− 2B −2D/5

45

[
1−

(
1− z

h

)3
]

. (5.166)

This yields, using (5.96) and (5.106),

ũ(1) − f (z)Ũ (1) = 10

B +D
f1(z)

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
(5.167)

+ 10

Ã(B +D)
f2(z)

(
ψ(1) − Ũ (0)Ũ (1)

2(r̃ (0))2
+ r̃ (1)(Ũ (0))2

2(r̃ (0))3

)
,

where

f1(z) = 55C g2(z)−7g1(z)

34C +28
, (5.168)

and

f2(z) =−385h̃1/2 (3C −4)g2(z)− g1(z)

34C +28
. (5.169)

As we did before, we finally use (5.99) and (5.105) to replace the terms of first order in
the right-hand side of (5.167) and, together with (5.163), we obtain, reverting to the
dimensional quantities,

u = f (z)U + 10

B +D
f1(z)

(
U − 2A

5
r 3/2

)
+ 10

A(B +D)
f2(z)

(
ψ− U 2

4r 2

)
. (5.170)

This expression gives the velocity profile in the flow to the accuracy of the model, i.e.
to within terms of order 2.

5.3. Linear stability and second order extension
We study here the linear stability of a steady uniform solution of (5.143). In other

words, we suppose that the solutions are sinusoidal perturbations of the constant
solution given by r̃ = 1, Ũ = Ũ (0) and ψ̃ = ψ̃(0). The depth-averaged velocity can be
scaled with its value in the constant solution, which yields Ã = 5/2, Ũ (0) = 1 and
ψ̃(0) = 1/4. We thus write r̃ = 1+ r ′, Ũ = 1+U ′, ψ̃ = 1/4+ψ′, where (r ′,U ′,ψ′) =
(a1, a2, a3)exp

[
i k(x̃ − c t̃ )

]
. The amplitudes a1, a2, a3 are three constants, as well as the

wave number k and the phase velocity c. We obtain the following linearised system:

M(ε)
(
r ′,U ′,ψ′)T = 0, with M(ε) = cosθ

F 2
R + iεkL (5.171)
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where the matrix L comes from the conservative terms of the left-hand side of the
equations, and is given by

L =

 1− c 1 0
3β
4 + K cosθ

F 2 1− c β

0 0 1− c

 , (5.172)

and the matrix R comes from the right-hand side relaxation terms and is given by

R =

 0 0 0
− 3

2(B+D) − 4λ
5(B+D)

1
B+D + 4λ

5(B+D) − 8λ
5(B+D)

3α̃1 − α̃2 −2α̃1 + α̃2 −2α̃2

 , (5.173)

The dispersion relation is then obtained by imposing the condition det(M(ε)) = 0. It
is exactly the same as in the incompressible case, except that the constant B of the
incompressible case should be replaced by B +D here. Hence the study of Deleage
and Richard 2025 can be straightforwardly applied to the present model. We deduce
that the condition of stability is 25F 2/4 < (4−3C )cosθ. A consistent expression of
the stability criterion for the incompressible µ(I )-rheology was obtained by Forterre
2006, using a slightly different Froude number F , defined as F 2 = F 2/cosθ. With this
definition of the Froude number, the obtained stability criterion coincides with the
one found by Forterre 2006 in the incompressible case (i.e. when D = 0) and it reads

F <Fc = 4

5

√
1− 3C

4
= 4

5

√
1− 3

2
tan2θ+ 3

4

(µ2 − tanθ)(tanθ−µ1) tanθ

µ2 −µ1 +D(µ2 − tanθ)(tanθ−µ1)
.

(5.174)
The stability criteria are identical in the incompressible case because the present
depth-averaged model is consistent up to order 1 in ε with the compressible µ(I )-
rheology, which reduces to the incompressible rheology when div(v ) = 0. The stability
criteria obtained for the compressible model is thus an extension of the formula found
by Forterre 2006. In particular, this formula is also valid for the compressible equations
of the µ(I )−φ(I ) rheology.

Note that the critical Froude number Fc is real if the condition C < 4/3 is satisfied.
This condition is also a condition for a well-posed enstrophy equation (see §4.3 above)
and to guarantee the hyperbolicity of the system (see §5.1). Since this condition
appears in the stability criterion of a steady uniform flow for the µ(I ) rheology, it is
not specific to the model derived in this work. This condition is discussed in §5.4.

The variation of the consistent critical Froude number for the incompressible rheol-
ogy (Forterre 2006) as a function of the inclination is presented in Figure 5.2 (red curve)
in the case of glass beads, using the values µ1 = tan20.9◦ and µ2 = tan32.76◦ (Jop et al.
2005), together with the experimental measurements of Forterre and Pouliquen 2003
(black dots). The same curve corresponding to the compressible rheology is plotted in
green. Since there is no data for the law φ(I ) in the paper by Forterre and Pouliquen
2003, we chose for φ(I ) the classical affine law (5.12), with standards parameters
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φc = 0.6, φm = 0.4. The green curve is lower than the red one, although the two curves
are very close to each other. The stability criterion obtained with a Saint-Venant model
(Forterre and Pouliquen 2003) is also shown, with a shape factor of 1 (velocity constant
over the depth) (black line), or with a shape factor of 5/4 (Bagnold velocity profile)
(blue line).

Figure 5.2. – Critical Froude number as a function of the angle θ for glass beads. The-
oretical value obtained with the incompressible µ(I ) rheology (Forterre
2006) (red curve) and given by the present model (green curve). Saint-
Venant model with a shape factor of 1 (black line) and of 5/4 (blue line)
(Forterre and Pouliquen 2003). Black dots: experimental measurements
of Forterre and Pouliquen 2003.

As in the incompressible case, it is possible to write a higher order version of the
model with diffusive terms, in order to capture the cut-off frequency which was
observed by Forterre and Pouliquen 2003. The diffusive terms can be obtain from
the expression of τ̃(0)

xx , see (5.58). Since the flow is incompressible at order 0, the
computations of Deleage and Richard 2025 stay valid for the compressible case. We
obtain the following system:

∂r

∂t
+ ∂rU

∂x
= 0,

∂rU

∂t
+ ∂

∂x

(
rU 2 +Π)= g cosθ

[
r (tanθ−ξµb)+ 10λ

A2B

(
ψ− U 2

4r 2

)]
+ ∂

∂x

(
ανr 3/2∂U

∂x

)
,

∂rψ

∂t
+ ∂rUψ

∂x
= 2gU cosθ

r 2

[
α1

r 1/2

(
U − 2

5
Ar 3/2

)
+α2

(
ψ− U 2

4r 2

)]
+ ∂

∂x

(
16αν

7β
r 3/2∂ψ

∂x

)
,

(5.175)
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where

αν = 5g sinθ

9A
, Π=βr 3ψ+K

g h2

2
cosθ, (5.176)

and the other parameters are defined in §5.1. The system is compatible with the
energy equation

∂r e

∂t
+ ∂

∂x
(rU e +ΠU )

=gU cosθ

[
r (tanθ−ξµb)+ βα1

r 1/2

(
U − 2

5
Ar 3/2

)
+

(
βα2 + 10λ

A2(B +D)

)(
ψ− U 2

4r 2

)]
+ ∂

∂x

(
ανr 3/2U

∂U

∂x

)
+ ∂

∂x

(
8αν
7β

r 7/2∂ψ

∂x

)
−ανr 3/2

(
∂U

∂x

)2

− 16αν
7β

r 5/2 ∂r

∂x

∂ψ

∂x
, (5.177)

with e defined by (5.152).
We can then extend the linear stability analysis to the study of the spatial growth

rate, of the phase velocity, and of the cut-off frequency, as it was performed by Deleage
and Richard 2025. Note that the only difference between the dispersion relation of the
compressible model and the one of the incompressible model is that the parameter
B is replaced by B +D in the compressible case. Thus we do not except a radical
change in the linear properties of the two systems. We compare the predictions of
the models with the experimental data of Forterre and Pouliquen 2003, in the case
of glass beads. Hence we take the same parameters that were used in this paper:
θ = 29◦,µ1 = tan(20.9◦),µ2 = tan(32.76◦),F = 1.02.

The variations of the dimensionless growth rate with the dimensionless pulsa-
tion are given in figure 5.3. The predictions of the compressible model (in red) are
compared to the incompressible one (in blue). The dashed lines are for the purely
hyperbolic systems, while the full curves are for the systems with diffusion. In both the
incompressible and compressible cases, the addition of diffusion enables to recover
a cut-off frequency, which is not predicted by the purely hyperbolic model. Taking
compressibility into account seems to provide a system which is "less unstable", as
the growth rate is a little smaller in the compressible case. In figure 5.4, we show the
dimensionless phase velocities, using the same colour conventions. We see that all
models give a similar phase velocity. Finally, the neutral stability curves are shown in
figure 5.5. Again, the general shape of the curve stays similar when compressibility is
added, even if the unstable zone is lightly restricted.
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Figure 5.3. – Spatial dimensionless growth rate as a function of the dimensionless
frequency. Black dots: experimental data of Forterre and Pouliquen 2003.
Red curves: compressible models. Blue curves: incompressible models
of Deleage and Richard 2025. Full lines: with diffusion. Dashed lines:
whithout diffusion.

Figure 5.4. – Dimensionless phase velocity as a function of the dimensionless fre-
quency. Black dots: experimental data of Forterre and Pouliquen 2003.
Red curves: compressible models. Blue curves: incompressible models
of Deleage and Richard 2025. Full lines: with diffusion. Dashed lines:
whithout diffusion.
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Figure 5.5. – Dimensionless cut-off frequency as a function of the Froude number.
Black dots: experimental data of Forterre and Pouliquen 2003. Red curves:
compressible models. Blue curves: incompressible models of Deleage
and Richard 2025. Full lines: with diffusion. Dashed lines: whithout
diffusion.

5.4. Domain of well-posedness
As in the incompressible case, the systems that are written here are only valid if the

two following conditions hold:

µ1 < tanθ <µ2, (5.178)

and

C < 4

3
. (5.179)

These two conditions are inherited from the µ(I )-rheology. Indeed, condition (5.178)
states that the computations performed here are only valid on the slopes at which sta-
tionary uniform flows are solutions of the constitutive equations of the compressible
µ(I )-rheology. Similarly, if condition (5.179) is not satisfied, every stationary uniform
solution of the compressible rheology constitutive equations is unstable (Forterre
2006; Deleage and Richard 2025). We refer to section 6 of chapter 3 for more comments
on these two ill-posed regimes.

Note that it is clear that these ill-posedness issues are not linked with the Hadamard
instability of the incompressibleµ(I )-rheology studied by Barker, Schaeffer, Bohórquez,
et al. 2015. Indeed, the systems are derived from a compressible version of the rhe-
ology, for which this instability disappears as soon as equation (5.15) is satisfied (see
Heyman et al. 2017).

6. Conclusion
In this work, we presented a depth-averaged model for granular flow consistent

with the compressible µ(I ) rheology. The model is derived with the help of asymptotic
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expansions of the variables up to order 1 in powers of the shallow water parameter ε.
The compressibility is taken into account in the averaging procedure with the help of
the Favre averaging operator. As a consequence, we obtain a three-equation model,
for three variables: the mass hold-up, the Favre averaged horizontal velocity, and the
enstrophy. The enstrophy is defined with the help of the second correlations of the
velocity and enables to take into account shear effects. The three equations form a
hyperbolic system of conservation laws with source terms, compatible with an energy
balance equation. We show that the system obtained is similar to a previous system
that was obtained by Deleage and Richard 2025 for an incompressible flow. Taking
compressibility into account results in adding a corrective factor to the friction law,
which slightly attenuates the rate at which friction increases with the mean velocity,
and redefining a parameter of the final model.

The height of the flow and the vertical velocity profile can be reconstructed from
the three variables of the system, with the same accuracy than the one of the model
(i.e. with an error of O(ε2)). The roll waves instability of the model is also studied. It is
shown that it appears when the Froude number is above a critical threshold. Since
the model is consistent up to order 1 with the µ(I )−φ(I ) rheology, the threshold is
the same for the bulk equation in the long wave limit. In particular, we obtain for
the first time the expression of the theoretical instability threshold of the µ(I )−φ(I )
rheology in the long wave limit. A higher order version of the model with diffusive
terms similar to the ones of Gray and Edwards 2014; Deleage and Richard 2025 is also
presented. We show that these terms enable to recover a cut-off frequency similar to
the one measured by Forterre and Pouliquen 2003.

7. Appendix

7.1. Case of a non-vanishing bulk friction coefficient
We show here that adding a bulk-friction coefficient into the constitutive equations

does not change the asymptotic expansions of the variables up to order 1 obtained in
section 3. Indeed, we will see that it results in the addition of terms of order O(ε2) in
the equations.

We thus consider a Cauchy stress tensor given by (5.14):

σ=−p(φ, |S|)Id +µ[I (φ)]p(φ, |S|) S

|S| +2µv (φ)p(φ, |S|)div(v )

|S| Id, (5.180)

with p(φ, |S|) defined in (5.13). With the bulk friction coefficient, a diagonal matrix is
added to the deviatoric stress tensor τ. It follows that only the diagonal coefficients of
τ are modified, and the coefficient τxz is unchanged. In dimensionless variables, we
obtain that

τ̃xx =µ(I )
p̃

|S̃|

(
∂ũ

∂x̃
− ∂w̃

∂z̃

)
+2µv (φ)

p̃

|S̃|

(
∂ũ

∂x̃
+ ∂w̃

∂z̃

)
, (5.181)
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and

τ̃zz =µ(I )
p̃

|S̃|

(
∂w̃

∂z̃
− ∂ũ

∂x̃

)
+2µv (φ)

p̃

|S̃|

(
∂ũ

∂x̃
+ ∂w̃

∂z̃

)
, (5.182)

We see that these quantities appear with a factor at least ε in the momentum equa-
tions (5.35) and (5.36). Thus they do not influence these equations at order 0, and
equations (5.41), (5.42), (5.43), (5.44) are still valid. Hence the system is again incom-
pressible at order 0. Furthermore, their values at order 0, which appear in the equation
of momentum of first order (see (5.59) and (5.60)), do not depend on the bulk friction
coefficient µv , which is multiplied by div(v) = 0 at order 0. Hence all expressions
for quantities at order 1 that were derived in §3.2 are unchanged, and the derivation
presented in section 4 is still consistent at order 1 with the equations. Similarly, the
derivation of the depth-averaged diffusion terms, which only uses the value of τ̃(0)

xx , is
not affected by the bulk friction coefficient.

7.2. Derivation of the depth-averaged energy equation
We compute the right-hand-side of (5.131). In order to do this, we use the expansion

(5.117) to keep track of the friction law (5.114). We first compute

∂τ̃xz

∂z̃
= ∂

∂z̃

(
τ̃(0)

xz +ετ̃(1)
xz

)+O(ε2) =−µ(0)φ(0) cosθ+ε∂τ̃
(1)
xz

∂z̃
+O(ε2)

=−ξµbφ
(0) cosθ+ε φ(0) cosθ

(B +D)Ũ (0)

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
+ε∂τ̃

(1)
xz

∂z̃
+O(ε2), (5.183)

where the last equality comes from (5.122). We obtain with (5.55) and (5.78)∫ h̃

0
ũ
∂τ̃xz

∂z̃
dz̃ =

∫ h̃

0
ũφcosθ

[
−ξµb +ε

1

(B +D) ˜U (0)

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)]
dz̃

+ε
∫ h̃

0
ũ(0)

(
∂τ̃(1)

xz

∂z̃
+φ(1) sinθ

)
dz̃ +O(ε2) (5.184)

=−φ(0)r̃Ũξµb cosθ+εφ
(0)h̃ cosθ

B +D

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
(5.185)

+εφ(0)h̃ cosθ Ã
∂h̃

∂x̃

(
2

5
h̃3/2 − F 2 Ã2h̃7/2

10cosθ

)
+O(ε2). (5.186)

We compute

1

B +D

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
+ Ã

∂h̃

∂x̃

(
2

5
h̃3/2 − F 2 Ã2

10cosθ
h̃7/2

)
= Ã

10

∂h̃

∂x̃
3C h̃3/2. (5.187)
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We thus obtain the following equation for the energy:

∂

∂t̃

(
r̃

Ũ 2

2
+ r̃ 3ψ̃

2
+ r̃ 2 cosθ

2F 2

)
+ ∂

∂x̃

(
r̃Ũ 3

2
+ 3

2
r̃ 3Ũψ̃+ r̃ 2Ũ

F 2
cosθ

)
= r̃Ũ cosθ

εF 2

(
tanθ−ξµb

)+ Ã

10

∂h̃

∂x̃

[
2

25
Ã2h̃9/2 + h̃5/2 cosθ

F 2
3C

]
+O(ε). (5.188)

To ensure compatibility between the energy equation and the momentum equation,
we need to modify the left-hand side of (5.188). We compute with (5.90), (5.100) and
(5.107)

1

2

∂r̃ 3ψ̃

∂t̃
+ 3

2

∂r̃ 3Ũψ̃

∂x̃
= 13

250
Ã3h̃9/2∂h̃

∂x̃
+O(ε). (5.189)

Similarly,
∂

∂t̃

r̃ 2 cosθ

2F 2
+ ∂

∂x̃

r̃ 2Ũ cosθ

F 2
= 2

5
Ãh̃5/2 cosθ

F 2

∂h̃

∂x̃
+O(ε). (5.190)

We now subtract Equations (1−β)(5.189) + (1−K )(5.190) from (5.188) to obtain

∂

∂t̃

(
r̃

Ũ 2

2
+ βr̃ 3ψ̃

2
+K

r̃ 2 cosθ

2F 2

)
+ ∂

∂x̃

(
r̃Ũ 3

2
+ 3βr̃ 3Ũψ̃

2
+K

r̃ 2Ũ cosθ

F 2

)
= r̃Ũ cosθ

εF 2

(
tanθ−ξµb

)+ Ã3

10
h̃9/2∂h̃

∂x̃

13β−11

25
+ 2λ

35
ÃC h̃5/2 cosθ

F 2

∂h̃

∂x̃
+O(ε). (5.191)

We recognize the work associated to the basal friction in the first term of the right-
hand side. We still need to find a suitable expression for the remaining terms. First,
it follows from the definition of β (5.129), the expression of Ũ (0) (5.90) and Equation
(5.106) that

Ã3

10
h̃9/2∂h̃

∂x̃

13β−11

25
+ 2λ

35

cosθ

F 2
ÃC

∂h̃

∂x̃
h̃5/2

=− 3β

250
Ã3h̃9/2∂h̃

∂x̃
+λ 10

Ã2(B +D)

cosθ

F 2
Ũ (0)

(
ψ(1) − Ũ (0)Ũ (1)

2(r̃ (0))2
+ r̃ (1)(Ũ (0))2

2(r̃ (0))3

)
. (5.192)

By using equations (5.90), (5.96) and (5.106), we get the following exact equality:

− 3

250
Ã3h̃9/2∂h̃

∂x̃
=cosθ

F 2
Ũ (0)

[
α̃1(θ)

h̃1/2

(
Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)

)
(5.193)

+α̃2(θ)

(
ψ(1) − Ũ (0)Ũ (1)

2(r̃ (0))2
+ r̃ (1)(Ũ (0))2

2(r̃ (0))3

)]
,

where

α1(θ) =− 33C

2A(B +D)(34C +28)
, α̃1(θ) =− 33C

2Ã(B +D)(34C +28)
, (5.194)
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and

α2(θ) = 77(9C −12)

2A2(B +D)(34C +28)
, α̃2(θ) = 77(9C −12)

2Ã2(B +D)(34C +28)
. (5.195)

Recall that Ũ (0) = Ũ +O(ε). Similarly, equation (5.89) can be written

Ũ (1) − 3

5
Ãh̃3/2 r̃ (1)

r̃ (0)
= 1

ε

[
Ũ − 2

5
Ãr̃ 3/2

]
+O(ε), (5.196)

and similarly for (5.105)

ψ(1) − Ũ (0)Ũ (1)

2(r̃ (0))2
+ r̃ (1)(Ũ (0))2

2(r̃ (0))3
= 1

ε

(
ψ̃− Ũ 2

4r̃ 2

)
+O(ε). (5.197)

We can thus modify (5.193) and obtain

− 3

250
Ã3h̃9/2∂h̃

∂x̃
= Ũ cosθ

εF 2

[
α̃1(θ)

r̃ 1/2

(
Ũ − 2

5
Ãr̃ 3/2

)
+ α̃2(θ)

(
ψ̃− Ũ 2

4r̃ 2

)]
+O(ε). (5.198)

In a similar fashion, we have

λ
10

Ã2(B +D)

cosθ

F 2
Ũ (0)∂h̃

∂x̃

(
ψ̃(1) − ÃŨ (1)

5h̃1/2

)
=λŨ

10cosθ

εF 2 Ã2(B +D)

(
ψ̃− Ũ 2

4r̃ 2

)
+O(ε). (5.199)
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6. Stabilité de solutions de type
onde progressive partiellement
congestionnée pour un modèle
jouet de suspension

Dans ce chapitre, on montre la stabilité non-linéaire d’une classe de solutions ondes
progressives au système d’équations de Navier-Stokes compressible sans pression avec
un coefficient de diffusion singulier. Ces équations sont inspirées d’une rhéologie de
suspension granulaire et reproduisent l’augmentation de la résistance à la déformation
du milieu avec l’augmentation de la fraction volumique solide. Grâce à l’introduction
d’une "vitesse effective", ce système peut également être interprété comme un modèle
social (système d’Aw-Rascle). La vitesse effective s’interprète alors comme la vitesse
que les agents souhaitent atteindre, et dépend de la densité du milieu. Les solutions
considérées ici encodent des effets de congestion en connectant un état congestionné
à gauche à un état non congestionné à droite, et peuvent aussi être interprétées
comme des solutions approchées d’un modèle de congestion dure. En utilisant des
estimations d’énergie à poids, on prouve la stabilité non linéaire d’ondes de choc
visqueux de ce système pour des perturbations d’intégrale nulle, ce qui étend en
particulier des résultats précédents qui ne s’appliquent pas au cas où le coefficient
de diffusion est singulier. Ce chapitre est extrait du preprint suivant, qui a été soumis
pour publication (DELEAGE et MEHMOOD 2024) :

Deleage, E., & Mehmood, M. A. (2024). Stability of partially congested travelling
wave solutions for the extended Aw-Rascle system. arXiv preprint arXiv :2404.17406.

1. Introduction

1.1. Presentation of the model
We study the following generalised Aw-Rascle system on the real line:{

∂tρ+∂y (ρu) = 0,

∂t (ρw)+∂y (ρuw) = 0.
(6.1)

Here, the quantity ρ represents the density while u and w respectively refer to the
actual and desired velocities of agents. This system was originally coined in 2000 by
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Aw and Rascle (Aw et al. 2000) and has popularly been used to model the evolution
of a system of interacting agents, such as the flow of vehicular traffic (Sheng et al.
2022; Chaudhuri, Navoret, et al. 2024; Mehmood 2024) or crowd dynamics (Aceves-
Sánchez et al. 2024). The standard Aw-Rascle system is complemented by the relation
w = u +P (ρ), where P = P (ρ) is known as the ‘offset’ function. In this paper, we
consider the case where w = u +∂y pϵ(ρ), with pϵ being a singular function of the
density depending on a parameter ϵ. More precisely, for ϵ> 0 fixed, we take

w = u +∂y pϵ(ρ) = u +∂y

(
ϵ

(
ρ

1−ρ
)γ)

, γ≥ 1. (6.2)

Note that the singularity as ρ approaches 1 in (6.2) is physically significant, since it
implies that the density of agents within the system may not exceed a maximal packing
constraint, i.e. ρ ≤ 1. In one-dimension it is interesting to note that the system may be
formally rewritten as {

∂tρ+∂y (ρu) = 0,

∂t (ρu)+∂y (ρu2)−∂y (ρ2p ′
ϵ(ρ)∂y u) = 0,

(6.3)

which resembles the one-dimensional compressible pressureless Navier-Stokes equa-
tions with a singular degenerate viscosity coefficient λϵ := ρ2p ′

ϵ(ρ).
The system (6.3) with (6.2) was rigorously derived by Lefebvre-Lepot and Maury in

Lefebvre-Lepot et al. 2008 from a microscopic lubrication model, and describes the
evolution of particles suspended in a viscous fluid that interact with each other via
a lubricating force. The viscosity coefficient obtained by Lefebvre-Lepot and Maury
is ϵ(1−ρ)−1, where ϵ is the viscosity of the interstitial fluid. The case γ= 1 has also
proven to be physically relevant in applications. Indeed, the viscosity coefficient of
dense granular suspensions was experimentally measured to behave like (φc −φ)−2 as
the solid volume fraction φ (which corresponds to the non-dimensionalised density)
approaches the maximal volume fraction φc (see for instance Guazzelli et al. 2018 for
a review).

Let us now go back to the momentum equation of (6.3). In the region where ρ
is far from 1, the viscosity λϵ vanishes uniformly as ϵ goes to 0 and (6.3) formally
degenerates towards the pressureless gas system (Berthelin 2002; Boudin 2000). On
the other hand, in the congested region, ρ is very close to 1, and the singularity
(1−ρ)−(γ+1) compensates the degeneracy in ϵ. The limit ϵ→ 0 in model (6.3)-(6.2)
(see Chaudhuri, Navoret, et al. 2024) is then viewed as a transition towards a granular
suspension model, where the interacting force is governed by the contact between the
solid grains. The Aw-Rascle system with this choice of offset function was investigated
by the authors of Chaudhuri, Navoret, et al. 2024 on a one-dimensional periodic
domain, where the global well-posedness for fixed ϵ was studied, as well as the limit
ϵ→ 0, which is known as the ‘hard-congestion limit’. The authors demonstrated that
up to a subsequence, solutions of (6.1)-(6.2) converge towards weak solutions of the
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‘hard-congestion model’ (see also Mehmood 2024; Bresch, Perrin, et al. 2014):
∂tρ+∂y (ρu) = 0, (6.4a)

∂t (ρu +∂yπ)+∂y ((ρu +∂yπ)u) = 0, (6.4b)

0 ≤ ρ ≤ 1, (1−ρ)π= 0, π≥ 0. (6.4c)

In this sense, the original system (6.1)-(6.2) may be referred to as an approximation
of (6.4). System (6.4) is an example of a free-congested system, where the free phase
refers to the region where ρ < 1 and the congested region is where ρ = 1. The potential
π is obtained in the limit and can be viewed as a Lagrange multiplier associated with
the incompressibility constraint ∂xu = 0 which holds in the congested region. The
existence of strong solutions to the system (6.4) is still not known and there are also no
results on the stability of non-trivial solutions (i.e. where π is not identically 0). Note
however that the existence of weak and measure-valued (duality) solutions to this
model was recently obtained on the real line in Chaudhuri, Mehmood, et al. 2024. We
also refer to Chaudhuri, Gwiazda, et al. 2023; Garavello et al. 2011; Hu et al. 2020 and
the references therein for further examples of the theoretical and numerical analysis
pertaining to the Aw-Rascle system.

In the present work, we are concerned with the stability of a specific class of solutions
to the system (6.1)-(6.2), namely the solutions (ρ,u) which are travelling waves that
connect a congested left state (ρ = 1) to a non-congested right state (ρ < 1). Since
systems (6.1)-(6.2) and (6.3) are equivalent (for sufficiently regular solutions), our task
is closely related to the stability of travelling wave solutions to the compressible Navier-
Stokes system, which has been studied by Dalibard and Perrin in Dalibard et al. 2019.
There, the authors studied system (6.3) with the addition of a pressure and a constant
viscosity coefficient µ> 0. A similar study was also carried out in Vasseur et al. 2016 by
Vasseur and Yao. Both of these works make use of a new formulation of the system,
which is obtained by introducing the ‘effective velocity’ w and rewriting the system in
terms of (w, v), where v := 1/ρ is the specific volume. The parabolic equation satisfied
by v and the transport structure for w then allows for desirable energy estimates,
which are carried out with the help of integrated variables (see Equation (6.12) below).
Rewriting the system using the effective velocity has also proven to be advantageous
when investigating the existence and uniqueness of weak/strong solutions to the
compressible Navier-Stokes system with a density-dependent viscosity of the form
µ(ρ) = ρα for α> 0 (see Burtea and Haspot 2020; Constantin et al. 2020 for example).

To the best of our knowledge, there are no known results concerning the stability of
shock waves where the viscosity coefficient is singular. The interest in such a result is
twofold. Firstly, the stability of strong solutions to (6.1)-(6.2) is significant due to the
equivalence with the compressible Navier-Stokes system (6.3), for which such a result
does not exist in the literature as far as we know. On the other hand, a stability result
for partially congested solutions would imply that the system (6.4) is also expected to
be stable, which provides additional validity for the model (6.4) and further verifies
the need for a rigid well-posedness theory. Note that in our case the presence of a
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singular, degenerate viscosity coefficient and the lack of pressure prevents us from
using the arguments of Dalibard et al. 2019; Vasseur et al. 2016 to obtain the estimates
required to prove the global existence and stability of travelling wave solutions to
(6.1)-(6.2). Nonetheless, we demonstrate in this paper that through a careful choice of
weighted energy estimates and the identification of good unknowns taking congestion
into account, we can obtain results analogous to those of Dalibard et al. 2019 for the
Aw-Rascle system (6.1) with the singular offset function (6.2).

Let us now give an outline of the paper. In the next subsection we detail our main
results, which are the existence of travelling wave solutions to system (6.1)-(6.2),
and the nonlinear stability of these solutions. Then in Section 2 we introduce basic
properties of travelling wave solutions, an integrated formulation of the system and
some useful preliminary estimates. The bulk of our work goes into Section 3, where we
obtain the well-posedness of the integrated system. Lastly, we prove the equivalence
between the integrated system and the original system in Section 4.

1.2. Main results
We now mention our main results. Let the Lagrangian mass coordinate x be such

that dx = ρdy −ρudt , and v := 1/ρ the specific volume. Then (6.3) becomes{
∂t v −∂xu = 0,

∂t u −∂x(φϵ(v)∂xu) = 0,
(6.5)

where

φϵ(v) := p ′
ϵ(1/v)

v3
= ϵγ

v(v −1)γ+1
, such that ∂y pϵ(ρ) =−φϵ(v)∂x v. (6.6)

In these coordinates, it follows that

w = u +∂y pϵ(ρ) = u −φϵ(v)∂x v

is constant, i.e. solves ∂t w = 0.
Our first lemma establishes the existence of travelling wave solutions, and gives a

quantitative description of the profile.

Proposition 6.1. Let 1 = v− < v+ and u− > u+ be real numbers. Then there exists a
unique (up to a translation) travelling wave solution (u,v)(t , x) = (uϵ, vϵ)(ξ) of (6.5),
complemented with the far field condition (u,v) → (u±, v±) as ξ→±∞, where ξ := x−st
and s is the shock speed which satisfies

s = u−−u+
v+−1

. (6.7)

The solution is a smooth monotone increasing function connecting 1 (at −∞) to v+ (at
+∞).

By setting vϵ(0) = (1+ v+)/2, one then has the following estimates:
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— In the congested region (ξ< 0),

1+
(
B − A0

ϵ
ξ

)−1/γ

≤ vϵ(ξ) ≤ 1+
(
B − A1

ϵ
ξ

)−1/γ

, (6.8)

where

A0 := s(v+−1)(v++1)

2
, A1 := s(v+−1)

2
, and B :=

(
2

v+−1

)γ
.

— In the free region ξ> 0,

v+− v+−1

2
exp

(
− A2

ϵ
ξ

)
≤ vϵ(ξ) ≤ v+− v+−1

2
exp

(
− A3

ϵ
ξ

)
, (6.9)

where

A2 := s(v++1)(v+−1)γ+1

2γ+2γ
and A3 := sv+(v+−1)γ+1

γ
.

It follows that vϵ converges almost everywhere to the shock wave v(ξ) := 1ξ<0 + v+1ξ>0

as ϵ→ 0, and it holds that

vϵ(ξ) ≤
[

1+
(
B − A1

ϵ
ξ

)−1/γ
]

1ξ<0 + v+1ξ≥0. (6.10)

With this in hand, we dedicate the rest of our effort towards studying the stability of
the profiles (uϵ, vϵ) where ϵ<< 1. We first express System (6.5) in term of the unknowns
v and w = u −φϵ(v)∂x v : {

∂t w = 0,

∂t v −∂x w −∂x(φϵ(v)∂x v) = 0.
(6.11)

In order to obtain effective energy estimates, we take inspiration from Dalibard et al.
2019; Vasseur et al. 2016 and choose to re-write this system in terms of the integrated
variables. Suppose we have initial data (w0, v0) such that (w0 − (wϵ)(0), v0 − (vϵ)(0)) ∈
(L1

0(R)∩L∞(R))2 where L1
0(R) is the subset of L1(R) consisting of zero mean functions.

Then we define the integrated initial data as

W0(x) :=
∫ x

−∞
(w0(z)−wϵ(0, z)) d z, V0(x) :=

∫ x

−∞
(v0(z)− vϵ(0, z)) d z.

Supposing that (w −wϵ, v − vϵ)(t) ∈ L1
0(R) holds true for positive times, we may also

define the integrated variables

W (t , x) :=
∫ x

−∞
(w(t , z)−wϵ(t , z)) d z, V (t , x) :=

∫ x

−∞
(v(t , z)− vϵ(t , z)) d z. (6.12)
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Integrating (6.11) between −∞ and x formally, we see that (W,V ) solves
∂t W = 0,

∂t V −∂xW −φϵ(v)∂x v +φϵ(vϵ)∂x vϵ = 0,

(W,V )(0, ·) = (W0,V0).

(6.13)

Since W is constant in time, we will denote it by its initial value W0 from now on.
The following result pertains to this system.

Theorem 6.1 (Existence of a strong solution to the integrated system). Let T > 0 and
γ≥ 1. Assume that (W0,V0) ∈ (H 2(R))2 and define

η0 := ∂xV0

vϵ|t=0 −1
. (6.14)

Suppose that η0 ∈ H 1(R),
p

x∂k
xW0 ∈ L2(R+) for k = 0,1,2, and that the following esti-

mate holds:

2∑
k=0

(
ckϵ

2k Ek (0;V2)+ϵ2k−1∥px∂k
xW0∥2

L2(R+)

)
+∥W0∥2

L2
(R)

+
(

T

ϵ

)1/γ (
ϵ2∥∂xW0∥2

L2
(R)

+ϵ4∥∂2
xW0∥2

L2
(R)

)
≤ δ0ϵ

3

(6.15)

for some constants δ0,c0,c1,c2 depending only on s,γ, v+. Then there exists a unique
solution (W0,V ) to (6.13) on (0,T ) such that

V ∈C ([0,T ]; H 2(R))∩L2(0,T ; H 3(R)).

Moreover, there exists a constant C =C (s, v+,γ,δ0) such that

sup
t∈[0,T ]

(∫
R

V 2 d x +
∫ t

0

∫
R
φϵ(vϵ)|∂xV |2 d xd s

)

+ sup
t∈[0,T ]

(
1∑

k=0
ϵ2k+2

[∫
R

∣∣∣∣∂k
x

(
∂xV

vϵ−1

)∣∣∣∣2

d x +
∫ t

0

∫
R
φϵ(vϵ)

∣∣∣∣∂k+1
x

(
∂xV

vϵ−1

)∣∣∣∣2

d xd s

])
≤Cϵ3.

(6.16)

Remark 6.1. It follows from Proposition 6.1 that the coefficient of diffusion φϵ(vϵ) (see
(6.6) above) is singular and tends to +∞ as x tends to −∞. As a consequence, we cannot
close the estimates on V in the classical Sobolev spaces H s . This is why we work with the
weighted quantity η := ∂xV /(vϵ−1) instead (see (6.35)), which yields better estimates.
The drawback of this method is that the time-independent quantity W0 cannot be
bounded uniformly in time in such weighted spaces. Hence we only obtain local in time
well-posedness when W0 ̸= 0, with a time of existence T proportional to 1/∥∂xW0∥2γ

H 1 .
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Remark 6.2. The assumption
p

x∂k
xW0 ∈ L2(R+) for k = 0,1,2 is classical for this kind

of system and was already used in Dalibard et al. 2021. However, it is possible to remove
this assumption and only assume that W0 ∈ H 2(R). One then obtains a shorter time of
existence, proportional to 1/∥W0∥2

H 2 (see Remark 6.13 below).

Remark 6.3. Using vϵ < v+ and the regularity of vϵ, the bound (6.16) implies that
V ∈ L∞(0,T ; H 2(R))∩L2(0,T ; H 3(R)). Furthermore, by using the smallness assumption
(6.15), we will show the lower bound v > 1 for every t , x. In other words, the perturbation
does not reach the congested state (see Remark 6.5).

Under the same assumptions, we also prove a stability result.

Theorem 6.2 (Nonlinear stability of travelling wave solutions). Let T > 0, γ≥ 1. Assume
that the initial data (u0, v0) is such that

u0−(uϵ)t=0 ∈W 1,1
0 (R)∩H 1(R),

∂x[u0 − (uϵ)t=0]

vϵ−1
∈ L2(R), v0−(vϵ)t=0 ∈W 2,1

0 (R)∩H 2(R),

(6.17)
and the associated integrated initial data (W0,V0) satisfies (6.15). Then there exists a
unique global solution (u, v) to (6.1) on [0,T ] which satisfies

u −uϵ ∈C ([0,T ]; H 1(R)∩L1
0(R)),

v − vϵ ∈C ([0,T ]; H 1(R)∩L1
0(R))∩L2(0,T ; H 2(R)).

In particular, there exists a constant C1 > 0 dependent on γ, v+,T such that

∥u −uϵ∥L∞(0,T ;H 1(R)) +∥v − vϵ∥L∞(0,T ;H 1(R)) +∥v − vϵ∥L2(0,T ;H 2(R)) ≤C1.

There also exists a constant C2 > 0 dependent on γ, v+,T,ϵ such that

∥u −uϵ∥L∞(0,T ;L1(R)) +∥v − vϵ∥L∞(0,T ;L1(R)) ≤C2.

As a consequence of the estimates derived during the course of proving the above
theorem, we are also able to assert global existence with T = +∞ and long-time
stability if we remove the perturbation on the desired velocity.

Corollary 6.1. If we additionally assume that

(u −uϵ)(0) = (∂xφϵ(v)−∂xφϵ(vϵ))(0), (6.18)

i.e. that (w −wϵ)(0) = 0, then the solution (u, v) is defined on R+×R, satisfies (6.16)
with T =+∞ and additionally

sup
x∈R

(|v − vϵ|(t , x)+|u −uϵ|(t , x)) → 0 as t →∞.
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Remark 6.4. All of our results remain true if we replace (6.2) by

w = u +∂y p̃ϵ(ρ) = u +∂y

(
ϵ f (ρ)

(1−ρ)γ

)
, γ≥ 1,

where f is smooth on R∗+ and such that γ f (ρ)+ (1−ρ) f ′(ρ) > 0, i.e. such that p̃ ′
ϵ(ρ) > 0.

In this case, one obtains that

φϵ(v) = ϵvγ−3 (v −1) f ′(1/v)+γ f (1/v)

(v −1)γ+1
. (6.19)

In order to improve readability and without loss of generality, we will stick to the case
f (ρ) = ργ, for which the coefficient φϵ can be written in the more compact form (6.6).
This is also the form considered in Chaudhuri, Navoret, et al. 2024. All computations
are similar (but heavier) in the general case (6.19).

2. Properties of the travelling wave solutions

2.1. Existence and asymptotic behavior of the travelling
waves

We give here the proof of Proposition 6.1.

Proof. We first prove the existence of travelling wave solutions to (6.5):{
∂t v −∂xu = 0,

∂t u −∂x(φϵ(v)∂xu) = 0,

We look for a travelling wave solution of this system, i.e. a pair (uϵ, vϵ) where uϵ, vϵ are
functions of the variable ξ= x − st , s being the speed of propagation of the solution.
We also suppose that (uϵ, vϵ) → (u±, v±) and that (u′

ϵ, v ′
ϵ) → (0,0) as ξ goes to ±∞. We

first obtain {
− sv ′

ϵ−u′
ϵ = 0,

− su′
ϵ− (φϵ(vϵ)u′

ϵ)
′ = 0.

Integrating this equation between ξ and +∞, we get{
svϵ+uϵ = sv++u+,

suϵ+φϵ(vϵ)u′
ϵ = su+.

The first equation yields uϵ = sv++u+− svϵ. Substituting this into the second line, we
deduce that vϵ solves the following ODE:

v ′
ϵ =

s(v+− vϵ)

φϵ(vϵ)
= s(v+− vϵ)vϵ(vϵ−1)γ+1

ϵγ
. (6.20)
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Assuming v+ > 1 and s > 0, we may deduce that v− = 1, and u− = s(v+−1)+u+, or
equivalently s = (u−−u+)/(v+−1). The function vϵ is therefore an increasing function
taking values in the interval (1, v+) (see Figure 6.1). The Cauchy-Lipschitz theorem
thus yields that vϵ is the unique (up to a translation) global solution of (6.20), as stated
in Proposition 6.1. Note that, as vϵ approaches 1, the diffusion coefficient φϵ(vϵ) tends
to +∞.

Figure 6.1. – The profile of vϵ, where we fix vϵ(0) = (1+ v+)/2 and v+ = 2,γ= 5.

Let us now make this statement more quantitative. From now on, suppose that
vϵ(0) = (1+ v+)/2, i.e. vϵ is halfway between 1 and v+. Let ξ< 0. From the ODE (6.20)
and the monotonicity of vϵ, we obtain the following bound:

s(v+−1)(vϵ(ξ)−1)γ+1

2ϵγ
≤ v ′

ϵ(ξ) ≤ s(v+−1)(v++1)(vϵ(ξ)−1)γ+1

2ϵγ
.

Dividing by (vϵ(ξ)−1)γ+1 and integrating between ξ and 0 yields

− s(v+−1)

2ϵγ
ξ≤− 2γ

γ(v+−1)γ
+ 1

γ(vϵ(ξ)−1)γ
≤− s(v+−1)(v++1)

2ϵγ
ξ,

i.e.

1+
(
B − A0

ϵ
ξ

)−1/γ

≤ vϵ(ξ) ≤ 1+
(
B − A1

ϵ
ξ

)−1/γ

,

where

A0 := s(v+−1)(v++1)

2
, A1 := s(v+−1)

2
, and B :=

(
2

v+−1

)γ
.
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Estimate (6.10) follows. When ξ> 0, one has similarly

s(v++1)(v+−1)γ+1

2γ+2ϵγ
≤ v ′

ϵ(ξ)

v+− vϵ(ξ)
≤ sv+(v+−1)γ+1

ϵγ
,

i.e.
A2

ϵ
≤ v ′

ϵ(ξ)

v+− vϵ(ξ)
≤ A3

ϵ
,

with

A2 := s(v++1)(v+−1)γ+1

2γ+2γ
and A3 := sv+(v+−1)γ+1

γ
.

Integrating between 0 and ξ yields

A2

ϵ
ξ≤− ln[v+− vϵ(ξ)]+ ln

[
v+−1

2

]
≤ A3

ϵ
ξ,

i.e.
v+−1

2
exp

(
− A2

ϵ
ξ

)
≥ v+− vϵ(ξ) ≥ v+−1

2
exp

(
− A3

ϵ
ξ

)
,

which is the desired estimate.

2.2. Passage to the integrated system and reformulation of
the equations

We now want to study the stability of the travelling wave solution obtained in the
previous section. In order to do so, we first rewrite (6.5) in term of the unknowns v
and w = u −φϵ(v)∂x v : {

∂t w = 0,

∂t v −∂x w −∂x(φϵ(v)∂x v) = 0.
(6.21)

Let (wϵ, vϵ) denote the travelling wave solution. It solves the same system:{
∂t wϵ = 0,

∂t vϵ−∂x wϵ−∂x(φϵ(vϵ)∂x vϵ) = 0.
(6.22)

Taking the difference between these two systems yields{
∂t (w −wϵ) = 0,

∂t (v − vϵ)−∂x(w −wϵ)−∂x(φϵ(v)∂x v)+∂x(φϵ(vϵ)∂x vϵ) = 0.
(6.23)

Following Dalibard et al. 2019; Vasseur et al. 2016, we introduce W , V such that

W (t , x) :=
∫ x

−∞
(w(t , x ′)−wϵ(t , x ′))dx ′ and V (t , x) :=

∫ x

−∞
(v(t , x ′)−vϵ(t , x ′))dx ′. (6.24)
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Integrating (6.23) between −∞ and x yields for (W,V ) the following system:{
∂t W = 0,

∂t V −∂xW −φϵ(v)∂x v +φϵ(vϵ)∂x vϵ = 0.

Introducing ψϵ such that ψ′
ϵ =φϵ, we obtain that W =W0 is constant and

∂t V −∂xW0 −∂x(ψϵ(v)−ψϵ(vϵ)) = 0. (6.25)

We first notice that we can replace v by vϵ+∂xV . In order to write the system as a
linearized part around vϵ plus a perturbation part, we also move the terms involving
ψϵ to the right-hand side and subtract ∂x(φϵ(vϵ)∂xV ) from both sides:

∂t V −∂xW0 −∂x(φϵ(vϵ)∂xV ) = ∂x
[
ψϵ(vϵ+∂xV )−ψϵ(vϵ)−ψ′

ϵ(vϵ)∂xV
]

.

This previous equation can be written in the following compact way:

∂t V −∂xW0 −∂x(φϵ(vϵ)∂xV ) = ∂x H(∂xV ), (6.26)

with
H( f ) :=ψϵ(vϵ+ f )−ψϵ(vϵ)−ψ′

ϵ(vϵ) f . (6.27)

2.3. Preliminary estimates
We give in this section some estimates on the functions vϵ, ψϵ, H and their deriva-

tives.

Lemma 6.1. (Estimates on vϵ) For any k ≥ 1, there exists a constant C =C (k,γ, v+, s)
such that

∀ϵ> 0,
∣∣∣∂k

x vϵ
∣∣∣≤ C (vϵ−1)kγ+1

ϵk
. (6.28)

Proof. By using the ODE (6.20) satisfied by vϵ, one can show by induction that for
every k ≥ 1, there exists a function fk independent of ϵ such that

— fk is smooth on R∗+,
— fk (1) ̸= 0,
— ∂k

x vϵ = fk (vϵ)(vϵ−1)kγ+1/ϵk .
Since fk is continuous on [1, v+] and 1 < vϵ < v+, the factor fk (vϵ) is uniformly
bounded.

Lemma 6.2. (Estimates on ψϵ) Let v̄ > 1 be arbitrary. For any k ≥ 1, there exists
C =C (k,γ, v̄) such that, for every v ∈ (1, v̄), for every ϵ> 0,∣∣∣ψ(k)

ϵ (v)
∣∣∣≤ Cϵ

(v −1)γ+k
. (6.29)
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Proof. As in the previous lemma, one can show that there exists a smooth function gk

defined on R∗+, independent of ϵ, such that ψ(k)
ϵ (v) = ϵgk (v)(v −1)−γ−k and gk (1) ̸= 0.

Since gk is smooth, we can bound it on [1, v̄].

As a consequence of Lemmas 6.1 and 6.2, we obtain the following estimates:

Lemma 6.3. The functions φ1/2
ϵ ∂x vϵ and φ1/2

ϵ

∂k
x vϵ

vϵ−1
, k ≥ 2, belong to L2(R), with a

time-independent L2(R) norm.

Proof. We first see with Proposition 6.1 and the ODE (6.20) satisfied by vϵ that, for
any k ≥ 1, ∂k

x vϵ ∈ L1(R)∩L∞(R). Since φϵ and vϵ−1 go to a positive and finite limit

as ξ goes to +∞, the integrability of the functions φ1/2
ϵ ∂x vϵ and φ1/2

ϵ

∂k
x vϵ

vϵ−1
at +∞ is a

consequence of the one of ∂k
x vϵ.

Concerning the integrability when ξ→−∞, we first see with Lemma 6.1 that there
exists C =C (ϵ) > 0 such that

|φ1/2
ϵ ∂x vϵ| ≤C (vϵ−1)(γ+1)/2, and

∣∣∣∣∣φ1/2
ϵ

∂k
x vϵ

vϵ−1

∣∣∣∣∣≤C (vϵ−1)(2k−1)γ/2−1/2.

By Proposition 6.1, we deduce that

|φ1/2
ϵ ∂x vϵ| ≤C

(
B − A1

ϵ
ξ

)−1/2−1/(2γ)

and ∣∣∣∣∣φ1/2
ϵ

∂k
x vϵ

vϵ−1

∣∣∣∣∣≤C

(
B − A1

ϵ
ξ

)1/2+1/(2γ)−k

∈ L2(R−)

since k ≥ 2. Note that we consider functions that depend only on the variable ξ= x−st ,
and so the L2-norms are independent of time.

Lemma 6.4. (Bounds on H) Let f such that there exists δ< 1 with ∥ f
vϵ−1∥∞ ≤ δ. Then

one has the following bounds on H( f ):

|H( f )| ≤ Cϵ

(vϵ−1)γ+2
f 2, (6.30)

|∂x H( f )| ≤ C

(vϵ−1)2
f 2 + Cϵ

(vϵ−1)γ+2
| f ||∂x f |, (6.31)

|∂2
x H( f )| ≤C (vϵ−1)γ−2

ϵ
f 2 + Cϵ

(vϵ−1)γ+2
| f ||∂2

x f |+ Cϵ

(vϵ−1)γ+2
|∂x f |2, (6.32)

for some C =C (s,γ,δ, v+).
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Proof. We first prove (6.30). Recall that

H( f ) =ψϵ(vϵ+ f )−ψϵ(vϵ)−ψ′
ϵ(vϵ) f .

By Taylor’s theorem,

|H( f )| ≤ f 2

2
sup

|v−vϵ|≤| f |
|ψ(2)

ϵ (v)|.

By the hypothesis on f , for any v such that |v − vϵ| ≤ | f |, it holds 0 < (1−δ)(vϵ−1) <
v −1 < 2v+. Lemma 6.2 then implies that |ψ(2)

ϵ (v)| ≤Cϵ(v −1)−(γ+2). Hence

|H( f )| ≤ Cϵ

(vϵ−1)γ+2
f 2,

for some constant C depending on γ, v+,δ. This is the first inequality. The other
inequalities are proved in the same way. We differentiate H with respect to x and
obtain

∂x H( f ) = ∂x vϵ
(
ψ′
ϵ(vϵ+ f )−ψ′

ϵ(vϵ)−ψ(2)
ϵ (vϵ) f

)+∂x f
(
ψ′
ϵ(vϵ+ f )−ψ′

ϵ(vϵ)
)

.

which yields (6.31) by the same arguments and Lemmas 6.1, 6.2. We now differentiate
a second time with respect to x:

∂xx H( f ) =∂xx vϵ
(
ψ′
ϵ(vϵ+ f )−ψ′

ϵ(vϵ)−ψ(2)
ϵ (vϵ) f

)+ (∂x f )2ψ(2)
ϵ (vϵ+ f )

+ (∂x vϵ)
2 (
ψ(2)
ϵ (vϵ+ f )−ψ(2)

ϵ (vϵ)−ψ(3)
ϵ (vϵ) f

)
+2∂x f ∂x vϵ

(
ψ(2)
ϵ (vϵ+ f )−ψ(2)

ϵ (vϵ)
)+∂xx f

(
ψ′
ϵ(vϵ+ f )−ψ′

ϵ(vϵ)
)

.

which yields (6.32) by similar computations.

3. Well-posedness for the integrated system

3.1. Basic energy estimate
The goal of this section is to prove the existence of strong solutions to the equation

∂t V −∂xW0 −∂x(φϵ(vϵ)∂xV ) = ∂x H(∂xV ). (6.33)

Since W0 is constant in time, we can control it for positive times through suitable
assumptions on the initial data. Thus without loss of generality we treat W0 as a per-
turbation of the system and prove the existence of a strong solution V to (6.33). Our
strategy is to employ a fixed-point argument, which requires us to first derive appro-
priate energy estimates. The first (zero-th order) estimate is obtained by multiplying
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(6.33) by V :
1

2

∫
R

V 2(t ) d x +
∫ t

0

∫
R
φϵ(vϵ)|∂xV |2 d xdτ

=1

2

∫
R

V 2(0) d x +
∫ t

0

∫
R

V (∂x H(∂xV )+∂xW0) d xdτ.

(6.34)

From the left-hand side of the equation, we see that the natural energy space is
V ∈ L∞([0,T ],L2(R)) and

√
φϵ(vϵ)∂xV ∈ L2((0,T )×R). Let us now move to the right-

hand side of (6.34) and try to close the estimate. For the term containing W0, an
integration by parts and Young’s inequality yield∣∣∣∣∫ t

0

∫
R

V ∂xW0

∣∣∣∣= ∣∣∣∣−∫ t

0

∫
R

W0∂xV

∣∣∣∣≤ 1

2

∫ t

0

∫
R
φϵ(vϵ)|∂xV |2 + 1

2

∫ t

0

∫
R

W 2
0

φϵ(vϵ)
.

Hence this term can be bounded through suitable assumptions on W0. For the term
containing H(∂xV ), we also perform an integration by parts and use the estimate
(6.30) on H that we computed before:∣∣∣∣∫ t

0

∫
R

V ∂x H(∂xV )

∣∣∣∣= ∣∣∣∣−∫ t

0

∫
R

H(∂xV )∂xV

∣∣∣∣
≤Cϵ

∫ t

0

∫
R

|∂xV |3
(vϵ−1)γ+2

≤Cϵ

∥∥∥∥ 1

φϵ(vϵ)(vϵ−1)γ+1

∥∥∥∥
L∞

t ,x

∫ t

0

∫
R
φϵ(vϵ)|∂xV |2 |∂xV |

vϵ−1
.

By recalling that φϵ(vϵ) = ϵγ

vϵ(vϵ−1)γ+1
(see (6.6)), we obtain that

∣∣∣∣∫ t

0

∫
R

V ∂x H(∂xV )

∣∣∣∣≤C
∫ t

0

∫
R
φϵ(vϵ)|∂xV |2 |∂xV |

vϵ−1
≤C

∥∥∥∥ ∂xV

vϵ−1

∥∥∥∥
L∞

t ,x

∫ t

0

∫
R
φϵ(vϵ)|∂xV |2,

where C = C (s,γ,δ). In order to close the estimate, we need that the norm of the
quantity ∂xV /(vϵ−1) in L∞([0,T ]×R) be small enough. The ideas of the proof of the
well-posedness of (6.33) are thus the following:

— Derive a-priori energy estimates for the quantities ∂xV /(vϵ−1) and ∂x [∂xV /(vϵ−
1)].

— Use the fact that ∂xV /(vϵ − 1) ∈ L∞([0,T ], H 1(R)) and the injection H 1(R) ,→
L∞(R) to complete the estimates and bound these quantities in the same func-
tion spaces as chosen for V .

— Use a fixed-point argument to obtain the local-in-time existence and uniqueness
of strong solutions to (6.33).

Remark 6.5. Note that the assumption that ∥∂xV /(vϵ−1)∥L∞
t ,x

is small, which enables
to close the previous estimate, is also the one needed to bound the quantity H(∂xV )
and its derivatives (see Lemma 6.4). This assumption has a simple interpretation; by
recalling that ∂xV = v − vϵ, we see that it prevents the perturbation v from reaching 1.
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In other words, this assumption ensures that ρ < 1, i.e. that the perturbation stays in
the uncongested state.

Remark 6.6. As explained in the previous remark, it is crucial to bound the quantity
∂xV /(vϵ−1). Note that adding the factor 1/(vϵ−1) is not free, and the price to pay is
that a lot of commutators appear and the equations become more complicated (see the
next subsection). However, even if the weight 1/(vϵ−1) is singular, the commutators are
not difficult to bound. For instance,

∂x

(
∂xV

vϵ−1

)
= ∂2

xV

vϵ−1
− v ′

ϵ

(vϵ−1)2
∂xV.

From the estimate on v ′
ϵ that we derived in Lemma (6.1), it follows that the coefficient

v ′
ϵ/(vϵ−1)2 is bounded by C (vϵ−1)γ−1/ϵ. Hence this coefficient is uniformly bounded in

t , x as soon as γ≥ 1, which is our hypothesis throughout the paper. The computations
of the next subsections show that γ≥ 1 is the only hypothesis needed in order to obtain
good bounds for every quantity which appears due to commutators. Furthermore, the
factor 1/ϵ in the coefficient v ′

ϵ/(vϵ−1)2 of the commutator suggests that the operator ∂x

scales as 1/ϵ for solutions of the equations, i.e. that ∥∂x f ∥ ∼= ∥ f ∥/ϵ. This observation is
reflected in the definition of the norm to be seen in Section 3.3.

3.2. Formulation of the system for higher order estimates
In this subsection we describe our approach for deriving higher order energy esti-

mates. Our estimates will heavily involve the quantity

η≡ η(∂xV ) := ∂xV

vϵ−1
. (6.35)

The evolution equation for η reads as

∂tη−∂x(φϵ(vϵ)∂xη) = ∂2
xW0

vϵ−1
+ ∂2

x H

vϵ−1
+ sηv ′

ϵ

vϵ−1

+ φϵ(vϵ)v ′
ϵ∂

2
xV

(vϵ−1)2
+∂x

(
ηφϵ(vϵ)v ′

ϵ

vϵ−1

)
+ 1

vϵ−1
∂x

(
φ′
ϵ(vϵ)v ′

ϵ∂xV
)

,

(6.36)
which may be expressed as

∂tη−∂x(φϵ(vϵ)∂xη) =Lϵ(η)+Sϵ(∂xV ), (6.37)
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where

Lϵ(η) := sηv ′
ϵ

vϵ−1
+ φϵ(vϵ)v ′

ϵ

vϵ−1

(
∂xη+

ηv ′
ϵ

vϵ−1

)
+∂x

(
ηφϵ(vϵ)v ′

ϵ

vϵ−1

)
+ 1

vϵ−1
∂x

(
φ′
ϵ(vϵ)v ′

ϵ(vϵ−1)η
)

,

Sϵ(∂xV ) := ∂2
x[W0 +H(∂xV )]

vϵ−1
.

Differentiating (6.37), we obtain

∂t (∂xη)−∂x(φϵ(vϵ)∂
2
xη) = ∂xSϵ(∂xV )+Lϵ(∂xη)+Cϵ(η), (6.38)

where Cϵ(η) := [∂x ,∂x(φϵ∂x ·)]η+ [∂x ,Lϵ]η= ∂x(∂xφϵ(vϵ)∂xη)+ [∂x ,Lϵ]η appears due
to commutators and

[∂x ,Lϵ]η := sη∂x

(
v ′
ϵ

vϵ−1

)
+∂x

(
φϵ(vϵ)v ′

ϵ

vϵ−1

)
∂xη

+∂x

(
φϵ(vϵ)(v ′

ϵ)
2 1

(vϵ−1)2

)
η+∂x

(
η∂x

(
φϵ(vϵ)v ′

ϵ

vϵ−1

))

− v ′
ϵ

(vϵ−1)2
∂x(φ′

ϵv ′
ϵ(vϵ−1)η)+ 1

vϵ−1
∂x(∂x(φ′

ϵ(vϵ)v ′
ϵ(vϵ−1))η).

The equations (6.37) and (6.38) will be used to derive key estimates that allow us to
eventually conclude the fixed-point argument.

Note that the operators Lϵ and Cϵ, that appear in equations (6.37) and (6.38), are
linear. In order to improve readability, we give bounds for these two operators in the
following lemma.

Lemma 6.5. There exists C =C (γ, s, v+) > 0 such that, for every α ∈ (0,1), for every ϵ> 0,
for any η sufficiently regular, there holds∣∣∣∣∫ t

0

∫
R
Lϵ(η)η

∣∣∣∣≤α∫ t

0

∫
R
φϵ(vϵ)(∂xη)2 + C

αϵ2

∫ t

0

∫
R
φϵ(vϵ)(∂xV )2 (6.39)

and∣∣∣∣∫ t

0

∫
R
Cϵ(η)∂xη

∣∣∣∣≤α∫ t

0

∫
R
φϵ(vϵ)(∂2

xη)2 + C

αϵ2

∫ t

0

∫
R
φϵ(vϵ)

(
(∂xη)2 + (∂xV 2)

ϵ2

)
. (6.40)

We defer the proof of this lemma to Appendix 5.2.

3.3. Construction of global strong solutions
In this subsection we lay out the framework for our fixed point argument before fi-

nally stating the result of this section, i.e. the well posedness of (6.33) in an appropriate
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space. Firstly, we fix T > 0 arbitrary. For t ∈ [0,T ], we define the energies

E0(t ;V ) :=
∫
R

V 2(t ) d x, D0(t ;V ) :=
∫
R
φϵ(vϵ)|∂xV (t )|2 d x, (6.41)

as well as

Ek (t ;V ) :=
∫
R
|∂k−1

x η|2(t ) d x, Dk (t ;V ) :=
∫
R
φϵ(vϵ)|∂k

xη|2(t ) d x, for k = 1,2. (6.42)

Then given V1, we introduce the system{
∂t V2 −∂xW0 −∂x(φϵ(vϵ)∂xV2) = ∂x H(∂xV1),

V2|t=0 =V0,
(6.43)

and the application A ϵ : V1 7→V2, where V1,V2 ∈X and

X = {
V : Ek (t ,V ) ∈ L∞(0,T ) and Dk (t ;V ) ∈ L1(0,T ) for k = 0,1,2.

}
,

∥V ∥2
X := sup

t∈[0,T ]

(
2∑

k=0
ckϵ

2k
[

Ek (t ;V (t ))+
∫ t

0
Dk (τ;V (τ)) dτ

])
,

where ck = ck (s,γ, v+), for k = 0,1,2, are constants independent of ϵ which are to be
determined. For a proof that the map A ϵ is well defined, see Appendix 5.1. For δ> 0
we define the ball

Bδ := {
V ∈X : ∥V ∥X < δϵ3/2} . (6.44)

The remainder of this section aims to prove the following result.

Proposition 6.2. Assume that for some δ0 = δ0(s, v+,γ) > 0 it holds

2∑
k=0

(
ckϵ

2k Ek (0;V2)+ϵ2k−1∥px∂k
xW0∥2

L2(R+)

)
+∥W0∥2

L2
x
+

(
T

ϵ

)1/γ (
ϵ2∥∂xW0∥2

L2
x
+ϵ4∥∂2

xW0∥2
L2

x

)
≤ δ0ϵ

3,

(6.45)

where ck = ck (s,γ, v+) for k = 0,1,2 are positive constants. Then there exists δ =
δ(s,γ, v+) such that

1. the ball Bδ is stable by A ϵ,

2. the map A ϵ is a contraction on Bδ.

Consequently, A ϵ has a unique fixed point in Bδ.

3.4. Stability of the ball Bδ

We let δ> 0, V1 ∈ Bδ and V2 :=A ϵ(V1). The aim of this subsection is to show that we
can find δ> 0 such that V2 ∈ Bδ. First, let us clarify the meaning of some notation we
will use in this section.
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— We denote by C = C (s,γ, v+) an arbitrary positive constant independent of ϵ.
This constant may change, even within the same line. We also denote C ′ =
C ′(s,γ, v+,c0,c1,c2) another positive constant that may additionally depend on
the constants c0,c1,c2 appearing in the definition of the norm ∥ ·∥X .

— To ease notation, we will often shorten φϵ(vϵ),ψϵ(vϵ) to φϵ,ψϵ respectively. For
i = 1,2 we also adopt the notation ηi := ∂xVi

vϵ−1 .
— We adopt the notation X t Yx := X (0,T ;Y (R)) for appropriate function spaces X

and Y .
Next, we make note of some useful estimates which will be repeatedly used in the
remainder of the paper. We have up to a constant independent of ϵ,

φϵ(vϵ) = ϵγ

vϵ(vϵ−1)γ+1
,

φ(k)
ϵ (vϵ) ∼= φϵ(vϵ)

(vϵ−1)k
, (6.46)

∂x vϵ = v ′
ϵ
∼= 1

ϵ
(vϵ−1)γ+1. (6.47)

As a consequence of (6.46) and (6.47), we have (vϵ−1)2∂x vϵ ≤C /ϵ and (vϵ−1)2/φϵ ≤
C /ϵ, provided γ ≥ 1. Let us now note a Gagliardo-Nirenberg-Sobolev interpolation
inequality which we will use. For f ∈ H 1(R),

∥ f ∥L∞
x
≤C∥∂x f ∥

1
2

L2
x
∥ f ∥

1
2

L2
x
, (6.48)

Finally, we mention some guidelines which our estimates will follow.
— We will often artificially place a factor of φϵ into the integral in order to obtain

an expression which is a function of the energies (6.41)-(6.42). This results in
the multiplication of a factor of 1/ϵ. For example, to estimate the term A :=∫ t

0

∫
R∂xV ∂xη d xdτ, we have

A ≤
∥∥∥∥ 1

φϵ

∥∥∥∥
L∞

t ,x

∫ t

0

∫
R
|√φϵ∂xV ||√φϵ∂xη| d xdτ≤ C

ϵ
∥√φϵ∂xV ∥L2

t ,x
∥√φϵ∂xη∥L2

t ,x
.

(6.49)
— To estimate terms involving the expression ∂2

xV /(vϵ−1), we will make use of the
identity

∂2
xV

vϵ−1
= ∂xη+

v ′
ϵ∂xV

(vϵ−1)2
. (6.50)

3.4.1. Estimates for k = 0

Fix t ∈ [0,T ]. We multiply (6.43) by V2 and integrate on R× (0, t ) to obtain as before:

1

2

∫
R

V 2
2 (t )d x+

∫ t

0

∫
R
φϵ|∂xV2|2d xdτ= 1

2

∫
R

V 2
2 (0)d x+

∫ t

0

∫
R

V2(∂x H(∂xV1)+∂xW0)d xdτ.

(6.51)
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Integrating by parts, we have∫ t

0

∫
R

V2∂x(H(∂xV1)+W0) =−
∫ t

0

∫
R

H(∂xV1)∂xV2 −
∫ t

0

∫
R

W0∂xV2 =: G1 +G2. (6.52)

Using the estimate on H and (6.48), and introducing η2 = ∂xV2
vϵ−1 ,

|G1| ≤C
∫ t

0

∫
R
φϵ(vϵ)

|∂xV1|2
vϵ−1

|∂xV2| =C
∫ t

0

∫
R
φϵ|∂xV1|2|η2|

≤C∥η2∥L∞
t ,x
∥√φϵ∂xV1∥2

L2
t ,x

≤C∥η2∥1/2
L∞

t L2
x
∥∂xη2∥1/2

L∞
t L2

x
∥√φϵ∂xV1∥2

L2
t ,x

≤ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X .

(6.53)

Remark 6.7. Note the following estimate, which can be obtained from (6.48) and will
also be used later on:

∥η∥L∞
t ,x

≤ C ′

ϵ3/2
∥V ∥X . (6.54)

We now estimate G2. Young’s inequality gives that∣∣∣∣∫ t

0

∫
R

W0∂xV2

∣∣∣∣≤ 1

4

∫ t

0
D0(τ;V2) dτ+

∫ t

0

∫
R

W 2
0

φϵ
.

Using Fubini and the fact that W0 is independant of time, one then has∫ t

0

∫
R

W 2
0

φϵ
=

∫
R

W 2
0

∫ t

0

1

φϵ
=

∫
R

W 2
0

∫ t

0

1

φϵ
1ξ<0 dτd x +

∫
R

W 2
0

∫ t

0

1

φϵ
1ξ>0 dτd x,

where ξ := x − sτ. By using Equation (6.10), one then obtain for the first integral the
estimate∫

R
W 2

0

∫ t

0

1

φϵ
1ξ<0 dτd x ≤ C

ϵ

∫
R

W 2
0

∫ +∞

0

(
B − A1

ϵ
ξ

)−1−1/γ

1ξ<0 dτd x ≤C
∫
R

W 2
0 d x,

and for the second integral∫
R

W 2
0

∫ t

0

1

φϵ
1ξ>0 dτd x ≤ C

ϵ

∫
R

W 2
0

∫ x/s

0
1ξ>0dτd x = C

ϵ

∫
R

W 2
0 x1x≥0 d x.

Returning to (6.51), we get∫
R

V 2
2 (t ) d x + 3

2

∫ t

0

∫
R
φϵ(vϵ)|∂xV2|2 d xdτ

≤
∫
R

V 2
2 (0) d x +C∥W0∥2

L2
x
+ C

ϵ
∥pxW0∥L2(R+) +

C ′

ϵ3/2
∥V1∥2

X ∥V2∥X ,
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i.e.

E0(t ;V2)+3

2

∫ t

0
D0(τ;V2) dτ≤ E0(0;V2)+C∥W0∥2

L2
x
+C

ϵ
∥pxW0∥2

L2(R+)+
C ′

ϵ3/2
∥V1∥2

X ∥V2∥X .

(6.55)

Remark 6.8. Note that (6.55) does not depend on T > 0. This is due to the assumption
that

p
xW0 ∈ L2(R+). If this assumption is removed, one can still obtain a bound, but

it is not global in time anymore. Indeed, we can simply apply Holder and Young’s
inequality to get∣∣∣∣∫ t

0

∫
R

W0∂xV2

∣∣∣∣≤ ∥φ−1/2
ϵ ∥L∞

t ,x
∥√φϵ∂xV2∥L2

t ,x
∥W0∥L2

t ,x
≤ C t

ϵ
∥W0∥2

L2
x
+ 1

4

∫ t

0
D0(τ;V2) dτ.

Thus instead of (6.55) we obtain

E0(t ;V2)+ 3

2

∫ t

0
D0(τ;V2) dτ≤ E0(0;V2)+ C t

ϵ
∥W0∥2

L2
x
+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X . (6.56)

3.4.2. Estimates for k = 1

From (6.37), we deduce that η2 solves

∂tη2 −∂x(φϵ(vϵ)∂xη2) =Lϵ(η2)+Sϵ(∂xV1).

Multiplying by η2 and integrating in space and time, we get

1

2

∫
R
|η2(t )|2 d x +

∫ t

0

∫
R
φϵ(vϵ)|∂xη2|2 d xdτ− 1

2

∫
R
|η2(0)|2 d x

=
∫ t

0

∫
R
η2
∂2

x H(∂xV1)

vϵ−1
d xdτ+

∫ t

0

∫
R
η2
∂2

xW0

vϵ−1
d xdτ+

∫ t

0

∫
R
Lϵ(η2)η2 d xdτ

=:
3∑

n=1
In .

(6.57)
We now estimate each of I1, I2, I3. For I1, we first integrate by parts to get

I1 =−
∫ t

0

∫
R
∂xη2

∂x H(∂xV1)

vϵ−1
+

∫ t

0

∫
R
η2

v ′
ϵ∂x H(∂xV1)

(vϵ−1)2
=: (1a)+ (1b).

Using (6.31),

|(1a)| ≤C
∫ t

0

∫
R
|∂xη2|

∣∣∣∣ 1

vϵ−1

∣∣∣∣(∣∣∣∣ ∂xV1

vϵ−1

∣∣∣∣2

+ ϵ

(vϵ−1)γ+2
|∂xV1||∂2

xV1|
)

.
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The first term can be estimated as∫ t

0

∫
R
|∂xη2|

∣∣∣∣ 1

vϵ−1

∣∣∣∣ ∣∣∣∣ ∂xV1

vϵ−1

∣∣∣∣2

≤
∥∥∥∥ 1

φϵ(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥η1∥L∞
t ,x
∥√φϵ∂xV1∥L2

t ,x
∥√φϵ∂xη2∥L2

t ,x

≤ C ′

ϵ7/2
∥V1∥2

X ∥V2∥X ,

where we have used (6.48). Note that the identity (6.50) implies that∥∥∥∥√
φϵ

∂2
xV1

vϵ−1

∥∥∥∥
L2

t ,x

≤ ∥√φϵ∂xη1∥L2
t ,x
+∥v ′

ϵ(vϵ−1)−2
√
φϵ∂xV1∥L2

t ,x
≤ C ′

ϵ
∥V1∥X . (6.58)

Therefore, we have∫ t

0

∫
R

ϵ

(vϵ−1)γ+1
|∂xη2|

∣∣∣∣ ∂2
xV1

vϵ−1

∣∣∣∣ ∣∣∣∣ ∂xV1

vϵ−1

∣∣∣∣
≤

∥∥∥∥ ϵ

(vϵ−1)γ+1φϵ

∥∥∥∥
L∞

t ,x

∥η1∥L∞
t ,x

∥∥∥√
φϵ∂xη2

∥∥∥
L2

t ,x

∥∥∥∥√
φϵ

∂2
xV1

vϵ−1

∥∥∥∥
L2

t ,x

≤ C ′

ϵ7/2
∥V1∥2

X ∥V2∥X .

Next note that using (6.31),

|(1b)| ≤
∫ t

0

∫
R

v ′
ϵ

(vϵ−1)3
|∂xV2||∂x H(∂xV1)|

≤
∫ t

0

∫
R
|∂xV2|

v ′
ϵ

(vϵ−1)3

(∣∣∣∣ ∂xV1

vϵ−1

∣∣∣∣2

+ ϵ

(vϵ−1)γ+2
|∂xV1||∂2

xV1|
)

.

Then estimating in the same way as (1a), we also find that (1b) ≤ (C ′/ϵ7/2)∥V1∥2
X
∥V2∥X

and so

|I1| ≤ C ′

ϵ7/2
∥V1∥2

X ∥V2∥X . (6.59)

Integrating by parts,

I2 =−
∫ t

0

∫
R

∂xW0

vϵ−1
∂xη2 +

∫ t

0

∫
R

v ′
ϵ∂xW0

(vϵ−1)2

∂xV2

vϵ−1
.

We first compute using Young’s inequality that∣∣∣∣∫ t

0

∫
R

∂xW0

vϵ−1
∂xη2

∣∣∣∣≤ 1

8

∫ t

0
D1(τ;V2)dτ+C

∫ t

0

∫
R

1

φϵ

(
∂xW0

vϵ−1

)2

.
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The last integral can be estimated by∫ t

0

∫
R

1

φϵ

(
∂xW0

vϵ−1

)2

≤
∫
R

(∂xW0)2
∫ t

0

1

φϵ(vϵ−1)2

(
1ξ<0 +1ξ>0

)
dτd x,

with ξ := x − sτ. The bound (6.10) then yields for the part {ξ< 0} the estimate∫ t

0

1

φϵ(vϵ−1)2
1ξ<0 ≤

C

ϵ

∫ t

0

(
B − A1

ϵ
ξ

)−1+1/γ

1ξ<0

≤C

[(
B − A1

ϵ
(x − st )

)1/γ

−
(
B − A1

ϵ
(x −max(x,0))

)1/γ
]

1x−st≤0.

Note that the bound obtained in the end is a positive nondecreasing function that
goes to +∞ as t goes to +∞, for every x. The inequality (6.8) shows that this bound
is optimal, i.e. that a similar lower bounds holds for this integral. Hence it seems
complicated to bound the contribution of the integral I2 uniformly in time. However,
it is always possible to write a bound of the form∫ t

0

1

φϵ(vϵ−1)2
1ξ<0 ≤C

(
t

ϵ

)1/γ

,

uniformly in x. For the part {ξ> 0}, one has as before∫
R

(∂xW0)2
∫ t

0

1

φϵ(vϵ−1)2
1ξ>0 dτd x ≤ C

ϵ

∫
R

(∂xW0)2
∫ x/s

0
1ξ>0dτd x = C

ϵ

∫
R

(∂xW0)2x1x≥0 d x.

For the second integral appearing in I2, we use the same splitting between ξ< 0 and
ξ> 0, together with (6.10) to obtain again∣∣∣∣∫ t

0

∫
R

v ′
ϵ∂xW0

(vϵ−1)2

∂xV2

vϵ−1

∣∣∣∣≤ 1

2ϵ2

∫ t

0
D0(τ,V2)dτ+C

(
t

ϵ

)1/γ

∥∂xW0∥2
L2

x
+ C

ϵ
∥px∂xW0∥2

L2(R+).

This leads to

|I2| ≤ 1

8

∫ t

0
D1(τ;V2)dτ+ 1

2ϵ2

∫ t

0
D0(τ;V2)dτ+C

(
t

ϵ

)1/γ

∥∂xW0∥2
L2

x
+ C

ϵ
∥px∂xW0∥2

L2(R+).

(6.60)
By comparison with (6.55), we see that multiplicating by the singular weight 1/(vϵ−1)
prevents the estimates from being uniform in time when W0 ̸= 0.

Remark 6.9. If we do not suppose that
p

x∂xW0 ∈ L2(R+), but only that W0 ∈ H 1(R), it
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is still possible to obtain a weaker estimate:

|I2| ≤
∥∥∥∥∥ 1

(vϵ−1)
√
φϵ

∥∥∥∥∥
L∞

t ,x

∥√φϵ∂xη2∥L2
t ,x
∥∂xW0∥L2

t ,x
+

∥∥∥∥∥ v ′
ϵ

(vϵ−1)3
√
φϵ

∥∥∥∥∥
L∞

t ,x

∥√φϵ∂xV2∥L2
t ,x
∥∂xW0∥L2

t ,x

≤ C t

ϵ
∥∂xW0∥2

L2
x
+ C

ϵ2

∫ t

0
D0(τ;V2) dτ+ 1

8

∫ t

0
D1(τ;V2) dτ.

Finally, we use Equation (6.39) of Lemma 6.5 with α= 1/8 in order to bound I3:

|I3| =
∣∣∣∣∫ t

0

∫
R
Lϵ(η2)η2

∣∣∣∣≤ 1

8

∫ t

0

∫
R
φϵ(∂xη2)2 + C

ϵ2

∫ t

0

∫
R
φϵ(∂xV2)2

Collecting our estimates for I1 − I3 and returning to (6.57), we find

E1(t ;V2)+ 3

2

∫ t

0
D1(τ;V2) dτ≤ E1(0;V2)+C

(
t

ϵ

)1/γ

∥∂xW0∥2
L2

x
+ C

ϵ
∥px∂xW0∥2

L2(R+)

+ C ′

ϵ7/2
∥V1∥2

X ∥V2∥X + C

ϵ2

∫ t

0
D0(τ;V2) dτ,

(6.61)
which yields, after multiplication by ϵ2,

ϵ2E1(t ;V2)+ 3

2
ϵ2

∫ t

0
D1(τ;V2) dτ≤ ϵ2E1(0;V2)+C

(
t

ϵ

)1/γ

ϵ2∥∂xW0∥2
L2

x
+Cϵ∥px∂xW0∥2

L2(R+)

+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X +C
∫ t

0
D0(τ;V2) dτ.

(6.62)

Remark 6.10. If we do not suppose that
p

x∂xW0 belong to L2(R+), we still have

ϵ2E1(t ;V2)+ 3

2
ϵ2

∫ t

0
D1(τ;V2) dτ≤ϵ2E1(0;V2)+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X +C tϵ∥∂xW0∥2
L2

t ,x
.

3.4.3. Estimates for k = 2

Equation (6.38) gives that ∂xη2 solves

∂t (∂xη2)−∂x(φϵ(vϵ)∂
2
xη2) = ∂xSϵ(∂xV1)+Lϵ(∂xη2)+Cϵ(η2).
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Multiplying by ∂xη2 and integrating in space and time leads to

1

2

∫
R
|∂xη2(t )|2 d x +

∫ t

0

∫
R
φϵ(vϵ)|∂2

xη2|2 d xdτ− 1

2

∫
R
|∂xη2(0)|2 d x

=
∫ t

0

∫
R

∂2
x H(∂xV1)

vϵ−1
∂2

xη2 +
∫ t

0

∫
R

∂2
xW0

vϵ−1
∂2

xη2 +
∫ t

0
Lϵ(∂xη2)∂xη2 +

∫ t

0

∫
R
∂xη2 Cϵ(η2)

= :
4∑

n=1
Jn .

(6.63)
We now estimate J1, J2, J3, J4. Using (6.32),

|J1| ≤C
∫ t

0

∫
R

|∂2
xη2|

vϵ−1

(
(vϵ−1)γ−2

ϵ
|∂xV1|2 + ϵ

(vϵ−1)γ+2
|∂xV1||∂3

xV1|+ ϵ

(vϵ−1)γ+2
|∂2

xV1|2
)

≤ C

ϵ2
∥η1∥L∞

t ,x
∥√φϵ∂

2
xη2∥L2

t ,x
∥√φϵ∂xV1∥L2

t ,x
+Cϵ

∫ t

0

∫
R

|∂xV1|
vϵ−1

|∂2
xη2|

(vϵ−1)γ+2
|∂3

xV1|

+Cϵ
∫ t

0

∫
R

|∂2
xη2|

vϵ−1

|∂2
xV1|2

(vϵ−1)γ+2
.

(6.64)
We have that

ϵ

∫ t

0

∫
R

|∂xV1|
vϵ−1

|∂2
xη2|

(vϵ−1)γ+2
|∂3

xV1| ≤C∥η1∥L∞
t ,x

∫ t

0

∫
R

|∂3
xV1|

vϵ−1
φϵ|∂2

xη2|

≤C∥η1∥L∞
t ,x

∥∥∥√
φϵ∂

2
xη2

∥∥∥
L2

t ,x

∥∥∥∥√
φϵ

∂3
xV1

vϵ−1

∥∥∥∥
L2

t ,x

.

We compute that

∂3
xV1

vϵ−1
= ∂2

xη1 +
2(v ′

ϵ)

vϵ−1
∂xη1 + ∂xV1

vϵ−1

[
(v ′
ϵ)

2

(vϵ−1)2
+∂x

(
v ′
ϵ

vϵ−1

)]
,

hence ∥∥∥∥√
φϵ

∂3
xV1

vϵ−1

∥∥∥∥
L2

t ,x

≤ C ′

ϵ2
∥V1∥X , (6.65)

which yields with the previous computations that

ϵ

∫ t

0

∫
R

|∂xV1|
vϵ−1

|∂2
xη2|

(vϵ−1)γ+2
|∂3

xV1| ≤ C ′

ϵ11/2
∥V1∥X ∥V2∥2

X .

To estimate the final integral appearing in (6.64), let us first note that since

∂x(
√
φϵ∂xη1) = v ′

ϵφ
′
ϵ

2
√
φϵ
∂xη1 +

√
φϵ∂

2
xη1,
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we have that

∥∂x(
√
φϵ∂xη1)∥L2

t ,x
≤ C

ϵ
∥√φϵ∂xη1∥L2

t ,x
+∥√φϵ∂

2
xη1∥L2

t ,x
≤ C ′

ϵ2
∥V1∥X . (6.66)

Therefore,

∥√φϵ∂xη1∥L2
t L∞

x
≤ ∥√φϵ∂xη1∥1/2

L2
t ,x
∥∂x(

√
φϵ∂xη1)∥1/2

L2
t ,x

≤ C ′

ϵ3/2
∥V1∥X (6.67)

Using this estimate and (6.50), we have that

ϵ

∫ t

0

∫
R

|∂2
xη2|

vϵ−1

|∂2
xV1|2

(vϵ−1)γ+2

≤C
∫ t

0

∫
R
φϵ|∂2

xη2|
|∂2

xV1|2
(vϵ−1)2

≤C
∫ t

0

∫
R
φϵ|∂2

xη2|
(
|∂xη1|2 +

(v ′
ϵ)

2|∂xV1|2
(vϵ−1)4

)
≤C∥√φϵ∂

2
xη2∥L2

t ,x

(
∥∂xη1∥L∞

t L2
x
∥√φϵ∂xη1∥L2

t L∞
x
+ C

ϵ2
∥η1∥L∞

t ,x
∥√φϵ∂xV1∥L2

t ,x

)
≤ C ′

ϵ11/2
∥V1∥2

X ∥V2∥X .

In summary, we find J1 ≤ (C ′/ϵ11/2)∥V2∥X ∥V1∥2
X

.

Remark 6.11. From the estimate for J1 we can deduce that

∥√φϵ|∂xη|2∥L2
t ,x

≤ C ′

ϵ5/2
∥V ∥X , (6.68)

∥√φϵ|∂xV |2∥L2
t ,x

≤ C ′

ϵ
∥V ∥X , (6.69)

∥√φϵ∂xV ∥L2
t L∞

x
≤ C ′

p
ϵ
∥V ∥X , (6.70)

which will be useful for later estimates.

For J2, we proceed as in the k = 1 case and obtain an estimate similar to (6.60):

|J2| =
∣∣∣∣∫ t

0

∫
R

∂2
xW0

vϵ−1
∂2

xη2

∣∣∣∣≤ 1

6

∫ t

0
D2(τ;V2)dτ+C

(
t

ϵ

)1/γ

∥∂2
xW0∥2

L2
x
+ C

ϵ
∥px∂2

xW0∥2
L2(R+).

Remark 6.12. If
p

x∂2
xW0 ∉ L2(R+), we still have using the Holder and Young inequali-

ties that

|J2| ≤ Cp
ϵ
∥∂2

xW0∥L2
t ,x
∥√φϵ∂

2
xη2∥L2

t ,x
≤ C t

ϵ
∥∂2

xW0∥2
L2

x
+ 1

6

∫ t

0
D2(τ;V2) dτ.
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We now use Equation (6.39) of Lemma 6.5 with α= 1/6 to obtain that

|J3| =
∣∣∣∣∫ t

0
Lϵ(∂xη2)∂xη2

∣∣∣∣≤ 1

6

∫ t

0

∫
R
φϵ(∂

2
xη2)2 + C

ϵ2

∫ t

0

∫
R
φϵ(∂xη2)2.

It now remains to estimate the term involving Cϵ, i.e. J4. We use this time Equation
(6.40) of Lemma 6.5 with α= 1/6 to get

|J4| =
∣∣∣∣∫ t

0

∫
R
∂xη2 Cϵ(η2)

∣∣∣∣≤ 1

6

∫ t

0

∫
R
φϵ(∂

2
xη)2 + C

ϵ2

∫ t

0

∫
R
φϵ

(
(∂xη2)2 + (∂xV 2

2 )

ϵ2

)
.

Returning to (6.63) with our estimates for K1 −K7 and J1 − J3, we have

E2(t ;V2)+
∫ t

0
D2(τ;V2) dτ

≤ E2(0;V2)+C

(
t

ϵ

)1/γ

∥∂2
xW0∥2

L2
x
+ C

ϵ
∥px∂2

xW0∥2
L2(R+) +

C ′

ϵ11/2
∥V1∥2

X ∥V2∥X

+ C

ϵ2

∫ t

0
D1(τ;V2) dτ+ C

ϵ4

∫ t

0
D0(τ;V2) dτ.

We may assume that each C > 0 appearing on the right hand-side is bounded by
B0 = B0(γ, v+, s) > 0. Thus letting k0 := 1/(2B0) and multiplying by k0ϵ

4 results in

k0ϵ
4E2(t ;V2)+k0ϵ

4
∫ t

0
D2(τ;V2) dτ

≤ k0ϵ
4E2(0;V2)+

(
t

ϵ

)1/γ

ϵ4∥∂2
xW0∥2

L2
x
+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X

+ ϵ2

2

∫ t

0
D1(τ;V2) dτ+ 1

2

∫ t

0
D0(τ;V2) dτ+ϵ3∥px∂2

xW0∥2
L2(R+).

(6.71)

Adding to what we found for k = 1, i.e. (6.62), we find after simplifying the terms
containing D1 that

ϵ2E1(t ;V2)+ϵ2
∫ t

0
D1(τ;V2) dτ+k0ϵ

4E2(t ;V2)+k0ϵ
4
∫ t

0
D2(τ;V2) dτ

≤ϵ2E1(0;V2)+k0ϵ
4E2(0;V2)+

(
t

ϵ

)1/γ (
Cϵ2∥∂xW0∥2

L2
x
+ϵ4∥∂2

xW0∥2
L2

x

)
+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X

+Cϵ∥px∂xW0∥2
L2(R+) +ϵ3∥px∂2

xW0∥2
L2(R+) +

(
C + 1

2

)∫ t

0
D0(τ;V2) dτ.

Again, we may assume that each C +1/2,C > 0 that appear on the right-hand side
is bounded by B1 = B1(γ, v+, s) > 0. Without loss of generality, we may assume that
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B1 > 1. Thus letting k1 := 1/(2B1) and multiplying by k1 yields

k1ϵ
2E1(t ;V2)+k1ϵ

2
∫ t

0
D1(τ;V2) dτ+k1k0ϵ

4E2(t ;V2)+k1k0ϵ
4
∫ t

0
D2(τ;V2) dτ

≤k1ϵ
2E1(0;V2)+k1k0ϵ

4E2(0;V2)+
(

t

ϵ

)1/γ (
ϵ2∥∂xW0∥2

L2
x
+ϵ4∥∂2

xW0∥2
L2

x

)
+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X

+ϵ∥px∂xW0∥2
L2(R+) +ϵ3∥px∂2

xW0∥2
L2(R+) +

1

2

∫ t

0
D0(τ;V2) dτ.

Adding this inequality to the one that we obtained for k = 0, i.e. (6.55), and simplifying
the terms depending on D0, we get

E0(t ;V2)+
∫ t

0
D0(τ;V2) dτ+k1ϵ

2
(
E1(t ;V2)+

∫ t

0
D1(τ;V2) dτ

)
+k1k0ϵ

4
(
E2(t ;V2)+

∫ t

0
D2(τ;V2) dτ

)
≤ E0(0;V2)+k1ϵ

2E1(0;V2)+k1k0ϵ
4E2(0;V2)+

(
t

ϵ

)1/γ (
ϵ2∥∂xW0∥2

L2
x
+ϵ4∥∂2

xW0∥2
L2

x

)
+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X +ϵ∥px∂xW0∥2
L2(R+) +ϵ4∥px∂2

xW0∥2
L2(R+)

+C∥W0∥2
L2

x
+ C

ϵ
∥pxW0∥2

L2(R+).

Again, we may assume that each C > 0 in the right-hand side is bounded by B2 =
B2(s,γ, v+) > 1. We set k2 := 1/B2 and multiply by k2. In order to simplify computa-
tions, we also define

c0 := k2, c1 := k2k1, c2 := k2k1k0. (6.72)

We then obtain

2∑
k=0

ckϵ
2k

(
Ek (t ;V2)+

∫ t

0
Dk (τ;V2) dτ

)
≤

2∑
k=0

(
ckϵ

2k Ek (0;V2)+ϵ2k−1∥px∂k
xW0∥2

L2(R+)

)
+∥W0∥2

L2
x

+
(

t

ϵ

)1/γ (
ϵ2∥∂xW0∥2

L2
x
+ϵ4∥∂2

xW0∥2
L2

x

)
+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X .

We use the inequality t 1/γ ≤ T 1/γ in the right-hand side, and then take the supremum
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in time in the left-hand side to obtain

sup
t∈[0,T ]

(
2∑

k=0
ckϵ

2k
[

Ek (t ;V2)+
∫ t

0
Dk (τ;V2) dτ

])

≤
2∑

k=0

[
ckϵ

2k Ek (0,V2)+ϵ2k−1∥px∂k
xW0∥2

L2(R+)

]

+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X +∥W0∥2
L2

x
+ϵ2

(
T

ϵ

)1/γ (
∥∂xW0∥2

L2
t ,x
+ϵ2∥∂2

xW0∥2
L2

x

)
.

(6.73)

Note that, when W0 = 0, one can take T =+∞ and obtain a global bound. Using the
constants c0,c1,c2 in the definition of the norm ∥ ·∥X , (6.73) can be recast as

∥V2∥2
X ≤

2∑
k=0

[
ckϵ

2k Ek (0,V2)+ϵ2k−1∥px∂k
xW0∥2

L2(R+)

]
+∥W0∥2

L2
x

+ϵ2
(

T

ϵ

)1/γ (
∥∂xW0∥2

L2
t ,x
+ϵ2∥∂2

xW0∥2
L2

x

)
+ C ′

ϵ3/2
∥V1∥2

X ∥V2∥X

≤C ′δ2ϵ3/2∥V2∥X +δ2
0ϵ

3,

where we have used our assumption on the initial data (6.45). Taking δ< 1 to be such
that δ< 1/(

p
2C ′), defining δ0 := δ/2 and using Young’s inequality gives us

∥V2∥2
X ≤ δ2ϵ3, (6.74)

and so V2 ∈ Bδ as required. This completes the first part of Proposition 6.2.

Remark 6.13. When we do not suppose that
p

x∂k
xW0 ∈ L2(R+) for k = 0,1,2, we still

obtain that

∥V2∥2
X ≤

2∑
k=0

[
ckϵ

2k Ek (0;V2)+T ϵ2k−1∥∂k
xW0∥2

L2
x

]
+C ′δ2ϵ3/2∥V2∥X .

Hence the proof of the proposition still works after suitable modification of the assump-
tion on the initial data. In this case, one has to impose the condition

2∑
k=0

[
ckϵ

2k Ek (0;V2)+T ϵ2k−1∥∂k
xW0∥2

L2
x

]
≤ δ2

0ϵ
3.

3.5. The map A ϵ is a contraction
In this subsection we aim to show that the map A ϵ is a contraction. We consider

two elements V1,V ′
1 ∈ Bδ and define V2 := A ϵ(V1) and V ′

2 := A ϵ(V ′
2). Our goal is to

show that there exists δ< 1 with ∥V2−V ′
2∥X ≤ δ∥V1−V ′

1∥X . Defining Ṽ1 :=V1−V ′
1 and
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Ṽ2 :=V2 −V ′
1, the following equations are satisfied:

∂t Ṽ2 −∂x(φϵ(vϵ)∂xṼ2) = ∂x
(
H(∂xV1)−H(∂xV ′

1)
)

,

∂t η̃2 −∂x(φϵ(vϵ)∂x η̃2) = ∂2
x

(
H(∂xV1)−H(∂xV ′

1)
)

vϵ−1
+Lϵ(η̃2),

∂t∂x η̃2 −∂x(φϵ(vϵ)∂
2
x η̃2) = ∂x

(
∂2

x

(
H(∂xV1)−H(∂xV ′

1)
)

vϵ−1

)
+Lϵ(∂x η̃2)+Cϵ(η̃2).

(6.75)
We see that Ṽ2, η̃2 and ∂x η̃2 solve the same equations than V2,η2,∂xη2 respectively, up
to two differences:

— The constant term W0 is equal to zero here, as well as the initial data,
— The nonlinear terms (depending on H) are different.

With this in mind, multiplying the equations by Ṽ2, η̃2,∂x η̃2 respectively and using
again Lemma 6.5 (taking advantage of the linearity of Lϵ and Cϵ), we see that the
computations of the previous section can be repeated. We get a similar estimate after
suitable modification of the nonlinear terms. Since here W0 and the initial data are
equal to zero, we are left with

∥Ṽ2∥2
X ≤C

∣∣∣∣∫ t

0

∫
R

Ṽ2 ∂x
(
H(∂xV1)−H(∂xV ′

1)
)∣∣∣∣+Cϵ2

∣∣∣∣∣
∫ t

0

∫
R
η̃2

(
∂2

x

(
H(∂xV1)−H(∂xV ′

1)
)

vϵ−1

)∣∣∣∣∣
+Cϵ4

∣∣∣∣∣
∫ t

0

∫
R
∂x η̃2 ∂x

(
∂2

x(H(∂xV1)−H(∂xV ′
1)

vϵ−1

)∣∣∣∣∣=: C
3∑

k=1
ϵ2k−2|Lk |.

(6.76)
To estimate each Lk we will need the following result.

Lemma 6.6. If f1, f2 ∈X are such that ∥ f1
vϵ−1∥∞+∥ f2

vϵ−1∥∞ ≤ δ for some δ< 1, then there
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exists a constant C > 0 independent of ϵ such that

|H( f1)−H( f2)| ≤ Cφϵ(vϵ)

vϵ−1
| f1 − f2|(| f1|+ | f2|), (6.77)

|∂x H( f1)−∂x H( f2)|

≤ Cφϵ(vϵ)

vϵ−1

(
v ′
ϵ

vϵ−1
| f1 − f2|(| f1|+ | f2|)+|∂x( f1 − f2)|| f1|+ |∂x f2|| f1 − f2|

)
, (6.78)

|∂2
x H( f1)−∂2

x H( f2)| ≤ C (vϵ−1)γ−2

ϵ
| f1 − f2|(| f1|+ f2|) (6.79)

+ C

(vϵ−1)2

(|∂x( f1 − f2)|| f2|+ | f1 − f2||∂x f1|
)

+ Cφϵ(vϵ)

vϵ−1
|∂x( f1 − f2)|(|∂x f1|+ |∂x f2|)

+ Cφϵ(vϵ)

vϵ−1

(
| f1 − f2||∂2

x f1|+ |∂2
x( f1 − f2)|| f2|+ (∂x f2)2

vϵ−1
| f1 − f2|

)
.

The proof follows the same approach as that of Lemma 6.4, and a very similar result
can be seen in Lemma 3.4 of Dalibard et al. 2019. Thus we omit the proof. Integrating
by parts and using (6.77),

|L1| =
∣∣∣∣∫ t

0

∫
R
∂xṼ2 (H(∂xV1)−H(∂xV ′

1))

∣∣∣∣≤ ∫ t

0

∫
R
|∂xṼ2|

(
φϵ

vϵ−1
|∂xṼ1|(|∂xV1|+ |∂xV ′

1|)
)

≤C
∫ t

0

∫
R

√
φϵ|∂xṼ2| |∂xṼ1|

vϵ−1

(√
φϵ|∂xV1|+

√
φϵ|∂xV ′

1|
)

≤ ∥∥η̃1
∥∥

L∞
t ,x
∥Ṽ2∥X (∥V1∥X +∥V ′

1∥X ).

Using the definition of the norm,

|L1| ≤ C

ϵ3/2
∥Ṽ2∥X ∥Ṽ1∥X

(∥V1∥X +∥V ′
1∥X

)
. (6.80)

To deal with L2, we first integrate by parts to get

L2 =−
∫ t

0

∫
R
η̃2

v ′
ϵ(∂x H(∂xV1)−∂x H(∂xV ′

1))

(vϵ−1)2
−

∫ t

0

∫
R

∂x η̃2

vϵ−1
(∂x H(∂xV1)−∂x H(∂xV ′

1))

=: (2a)+ (2b).
(6.81)
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Using (6.78),

|(2a)| ≤C
∫ t

0

∫
R
|η̃2|

(v ′
ϵ)

2φϵ

(vϵ−1)4
|∂xṼ1|(|∂xV1|+ |∂xV ′

1|)+C
∫ t

0

∫
R
|η̃2|

v ′
ϵφϵ

(vϵ−1)3
|∂2

xṼ1||∂xV1|

+C
∫ t

0

∫
R
|η̃2|

v ′
ϵφϵ

(vϵ−1)3
|∂2

xV ′
1||∂xṼ1|

≤C

∥∥∥∥ (v ′
ϵ)

2

(vϵ−1)4

∥∥∥∥
L∞

t ,x

∥η̃2∥L∞
t ,x
∥√φϵ∂xṼ1∥L2

t ,x
(∥√φϵ∂xV1∥L2

t ,x
+∥√φϵ∂xV ′

1∥L2
t ,x

)

+C

∥∥∥∥ v ′
ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥η̃2∥L∞
t ,x
×(

∥
√
φϵ∂

2
xṼ1

vϵ−1
∥L2

t ,x
∥√φϵ∂xV1∥L2

t ,x
+∥

√
φϵ∂

2
xV ′

1

vϵ−1
∥L2

t ,x
∥√φϵ∂xṼ1∥L2

t ,x

)
.

Using (6.48) and (6.58), we therefore find

|(2a)| ≤ C

ϵ7/2
∥Ṽ2∥X ∥Ṽ1∥X

(∥V1∥X +∥V ′
1∥X

)
.

For (2b) we use (6.78) to get

|(2b)|

≤
∫ t

0

∫
R
|∂x η̃2| φϵ

(vϵ−1)2

(
v ′
ϵ

vϵ−1
|∂xṼ1|(|∂xV1|+ |∂xV ′

1|)+|∂2
xṼ1||∂xV1|+ |∂2

xV ′
1||∂xṼ1|

)
=: b1 +b2 +b3.

We then have that

b1 ≤C

∥∥∥∥ v ′
ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∫ t

0

∫
R
|√φϵ∂x η̃2||

√
φϵ∂xṼ1|(|η1|+ |η′1|)

≤ C

ϵ
∥√φϵ∂x η̃2∥L2

t ,x
∥√φϵ∂xṼ1∥L2

t ,x

(
∥η1∥L∞

t ,x
+∥η′1∥L∞

t ,x

)
≤ C

ϵ7/2
∥Ṽ1∥X ∥Ṽ2∥X

(∥V1∥X +∥V ′
1∥X

)
.

Next,

b2 ≤
∫ t

0

∫
R
|√φϵ∂x η̃2||

√
φϵ

∂2
xṼ1

vϵ−1
||η1| ≤C∥η1∥L∞

t ,x
∥√φϵ∂x η̃2∥L2

t ,x
∥√φϵ

∂2
xṼ1

vϵ−1
∥L2

t ,x

≤ C

ϵ7/2
∥Ṽ1∥X ∥Ṽ2∥X ∥V1∥X .
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We find similarly that

b3 ≤ C

ϵ7/2
∥Ṽ1∥X ∥Ṽ2∥X ∥V ′

1∥X , (6.82)

which yields with the previous estimates that

ϵ2|L2| ≤ ϵ2 C

ϵ7/2
∥Ṽ2∥X ∥Ṽ1∥X

(∥V1∥X +∥V ′
1∥X

)= C

ϵ3/2
∥Ṽ2∥X ∥Ṽ1∥X

(∥V1∥X +∥V ′
1∥X

)
.

We now estimate the term L3. Using (6.79) and (6.46),

|L3| ≤C

ϵ

∫ t

0

∫
R
|∂2

x η̃2|(vϵ−1)γ−3|∂xṼ1|(|∂xV1|+ |∂xV ′
1|)

+C
∫ t

0

∫
R

|∂2
x η̃2|

(vϵ−1)3
(|∂2

xṼ1||∂xV1|+ |∂xṼ1||∂2
xV1|)

+C
∫ t

0

∫
R
|∂2

x η̃2| φϵ

(vϵ−1)2
|∂2

xṼ1|(|∂2
xV1|+ |∂2

xV ′
1|)

+C
∫ t

0

∫
R
|∂2

x η̃2| φϵ

(vϵ−1)2
(|∂xṼ1||∂3

xV1|+ |∂3
xṼ1||∂xV ′

1|)

+C
∫ t

0

∫
R
|∂2

x η̃2| φϵ

(vϵ−1)3
|∂2

xV ′
1|2|∂xṼ1| =:

5∑
n=1

Mn .

(6.83)

Using (6.58),

M1 ≤ C

ϵ

∥∥∥∥ (vϵ−1)γ−2

φϵ

∥∥∥∥
L∞

t ,x

∥√φϵ∂
2
x η̃2∥L2

t ,x
∥√φϵ∂xṼ1∥L2

t ,x

(
∥η1∥L∞

t ,x
+∥η′1∥L∞

t ,x

)

≤ C

ϵ11/2
∥Ṽ2∥X ∥Ṽ1∥X (∥V1∥X +∥V ′

1∥X ).

Similarly,

M2 ≤C

∥∥∥∥ 1

φϵ(vϵ−1)

∥∥∥∥
L∞

t ,x

∥√φϵ∂
2
x η̃2∥L2

t ,x

(
∥√φϵ

∂2
xṼ1

vϵ−1
∥L2

t ,x
∥η1∥L∞

t ,x
+∥η̃1∥L∞

t ,x
∥√φϵ

∂2
xV1

vϵ−1
∥L2

t ,x

)

≤ C

ϵ11/2
∥Ṽ1∥X ∥Ṽ2∥X (∥V1∥X +∥V ′

1∥X ).

Next,

M3 ≤C
∫ t

0

∫
R
|√φϵ∂

2
x η̃2|

∣∣∣∣√φϵ
∂2

xṼ1

vϵ−1

∣∣∣∣
(∣∣∣∣ ∂2

xV1

vϵ−1

∣∣∣∣+
∣∣∣∣∣ ∂2

xV ′
1

vϵ−1

∣∣∣∣∣
)

≤C
∥∥∥√

φϵ∂
2
x η̃2

∥∥∥
L2

t ,x

∥∥∥∥√
φϵ

∂2
xṼ1

vϵ−1

∥∥∥∥
L2

t L∞
x

∥∥∥∥ ∂2
xV1

vϵ−1

∥∥∥∥
L∞

t L2
x

+
∥∥∥∥∥ ∂2

xV ′
1

vϵ−1

∥∥∥∥∥
L∞

t L2
x

 .
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Using (6.50), (6.67) and (6.70),∥∥∥∥√
φϵ

∂2
xṼ1

vϵ−1

∥∥∥∥
L2

t L∞
x

≤ ∥√φϵ∂x η̃1∥L2
t L∞

x
+

∥∥∥∥ v ′
ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥√φϵ∂xṼ1∥L2
t L∞

x
≤ C

ϵ3/2
∥Ṽ1∥X .

(6.84)
On the other hand (6.50) also gives us∥∥∥∥ ∂2

xV1

vϵ−1

∥∥∥∥
L∞

t L2
x

≤C∥∂xη1∥L∞
t L2

x
+

∥∥∥∥ v ′
ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥η1∥L∞
t L2

x
≤ C

ϵ2
∥V1∥X , (6.85)

and so

M3 ≤ C

ϵ11/2
∥Ṽ1∥X ∥Ṽ2∥X (∥V1∥X +∥V ′

1∥X ).

For M4, we use again (6.65), thus,

M4 ≤C∥√φϵ∂
2
x η̃2∥L2

t ,x
∥η̃1∥L∞

t ,x

∥∥∥∥√
φϵ

∂3
xV1

vϵ−1

∥∥∥∥
L2

t ,x

+C∥√φϵ∂
2
x η̃2∥L2

t ,x
∥η′1∥L∞

t ,x

∥∥∥∥√
φϵ

∂3
xṼ1

vϵ−1

∥∥∥∥
L2

t ,x

≤ C

ϵ11/2
∥Ṽ1∥X ∥Ṽ2∥X (∥V1∥X +∥V ′

1∥X ).

Lastly, using (6.58) and (6.85),

M5 ≤C∥η̃1∥L∞
t ,x
∥√φϵ∂

2
x η̃2∥L2

t ,x

∥∥∥∥∥√
φϵ

∂2
xV ′

1

vϵ−1

∥∥∥∥∥
L2

t L∞
x

∥∥∥∥∥ ∂2
xV ′

1

vϵ−1

∥∥∥∥∥
L∞

t L2
x

≤ C

ϵ7
∥Ṽ1∥X ∥Ṽ2∥X ∥V ′

1∥2
X = C

ϵ11/2
∥Ṽ1∥X ∥Ṽ2∥X ∥V ′

1∥X

(∥V ′
1∥X

ϵ3/2

)
.

Finally,

ϵ4|L3| ≤ ϵ4 C

ϵ11/2
∥Ṽ1∥X ∥Ṽ2∥X (∥V1∥X +∥V ′

1∥X )

(
1+ ∥V ′

1∥X

ϵ3/2

)
≤ C

ϵ3/2
∥Ṽ1∥X ∥Ṽ2∥X (∥V1∥X +∥V ′

1∥X )

(
1+ ∥V ′

1∥X

ϵ3/2

)
Gathering our estimates for L1,L2,L3 and returning to (6.76), using the fact that V1,V ′

1 ∈
Bδ, we get

∥Ṽ2∥2
X ≤ C

ϵ3/2
∥Ṽ1∥X ∥Ṽ2∥X (∥V1∥X +∥V ′

1∥X )

(
1+ ∥V ′

1∥X

ϵ3/2

)
≤ δC∥Ṽ1∥X ∥Ṽ2∥X .

(6.86)

Therefore taking δ< 1/C we obtain that A ϵ is a contraction, as required. This con-
cludes the proof of Proposition 6.2.
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4. Asymptotic stability of (uϵ, vϵ)

So far, we have proved that if (u, v) is a solution to the original system such that
v − vϵ,u −uϵ ∈ L1

0(R) for all positive times then the system can be re-expressed in
terms of the integrated quantities (V ,W0), as (6.25). Furthermore, provided the initial
energy is small enough (i.e. satisfying (6.45)) then there exists a unique strong solution
to (6.25). In order to prove the existence and uniqueness of strong solutions to the
original system (6.1), we will need the following result:

Proposition 6.3. Provided that

(u −uϵ)(0) ∈ L1
0(R)∩H 1(R),

∂x(u −uϵ)(0)

vϵ−1
∈ L2(R), (6.87)

(v − vϵ)(0) ∈ L1
0(R), (6.88)

we have

1. ∥u −uϵ∥L∞(0,t ;L1(R)) +∥v − vϵ∥L∞(0,t ;L1(R)) ≤C (t ,ϵ),

2. (u −uϵ)(t ), (v − vϵ)(t ) ∈ L1
0(R) for each t > 0.

Our strategy of proof is as follows.
— Step 1: Establish the stability of the profile uϵ. This involves bounding the

quantity u −uϵ in L∞
t H 1

x , which will in particular be needed for the next steps.
— Step 2: Use the previous estimates to show that u −uϵ and v − vϵ remain in L1

for positive times.
— Step 3: Complete the remaining part of Proposition 6.3 using the estimates from

the previous steps.
For the remainder of this section we define v := vϵ+∂xV , w := wϵ+∂xW0 and u :=

w+φϵ(v)∂x v . Recall that η= ∂xV /(vϵ−1) is bounded, with ∥η∥L∞
t ,x

≤Cϵ−3/2∥V ∥X ≤Cδ
since V ∈ Bδ, hence v ≥ 1+ (1−Cδ)(vϵ−1) > 1 (up to reducing δ) and φϵ(v) is well
defined. As a consequence, the pair (w, v) satisfies the system{

∂t w = 0,

∂t v −∂x w −∂x(φϵ(v)∂x v) = 0.

4.1. Stability of the profile u −uϵ

From the system solved by (w, v), we deduce that u is a solution of

∂t (u −uϵ)−∂x(φϵ(vϵ)∂x(u −uϵ)) = ∂x[(φϵ(v)−φϵ(vϵ))∂xu] =: G . (6.89)

We see that the quantity G appearing on the right-hand side depends on the difference
φϵ(v)−φϵ(vϵ). In order to control G , we will make use of the following lemma, which
is analogous to Lemma 6.4.
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Lemma 6.7. Let ∆φϵ( f ) :=φϵ(vϵ+ f )−φϵ(vϵ). Then we have

|∆φϵ( f )| ≤Cφϵ(vϵ)
| f |

vϵ−1
, (6.90)

|∂x∆φϵ( f )| ≤Cφϵ(vϵ)

(
∂x vϵ| f |
(vϵ−1)2

+ |∂x f |
vϵ−1

)
, (6.91)

|∂2
x∆φϵ( f )| ≤Cφϵ(vϵ)

(
(∂x vϵ)2| f |
(vϵ−1)3

+ ∂x vϵ|∂x f |
(vϵ−1)2

+
∣∣∣∣ ∂x f

vϵ−1

∣∣∣∣2

+ |∂2
x f |

vϵ−1

)
. (6.92)

As a consequence, we also have that

|φϵ(v)| = |φϵ(vϵ+∂xV )| ≤ |φϵ(v)−φϵ(vϵ)|+φϵ(vϵ) ≤ (|η|+1)φϵ(vϵ). (6.93)

We omit the proof since it follows the same argument as that of Lemma 6.4. We now
wish to prove the following existence result.

Lemma 6.8. Suppose that (U0,V0) ∈ H 2(R)× H 3(R) is such that (6.45) is satisfied by
(W0,V0), and that (6.87) is also satisfied. Consider the solution (W0,V ) ∈ Bδ ⊂ X of
(6.25) obtained in Proposition 6.2. Then there exists a unique solution u −uϵ to (6.89)
such that

u −uϵ ∈C ([0,T ]; H 1(R))∩L2(0,T ; H 2(R)). (6.94)

Moreover, u −uϵ satisfies

sup
t∈[0,T ]

(
1∑

k=0

[
Ek (t ;u −uϵ)+

∫ t

0
Dk (τ;u −uϵ) dτ

])
≤C , (6.95)

where C =C (ϵ,δ, v+,γ, s).

Proof. We start from the equation satisfied by u −uϵ:

∂t (u −uϵ)−∂x(φϵ(vϵ)∂x(u −uϵ)) = ∂x[(φϵ(v)−φϵ(vϵ))∂xu] =G .

Multiplying by u −uϵ and integrating by parts where appropriate, we have

1

2

∫
R
|u −uϵ|2(t ) d x +

∫ t

0

∫
R
φϵ(vϵ)|∂x(u −uϵ)|2 d xdτ− 1

2

∫
R
|u −uϵ|2(0) d x

=−
∫ t

0

∫
R
∂x(u −uϵ)(φϵ(v)−φϵ(vϵ))∂xu d xdτ.
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With (6.90) and the triangle inequality, the right-hand side can be bounded by∣∣∣∣∫ t

0

∫
R
∂x(u −uϵ)(φϵ(v)−φϵ(vϵ))∂xu

∣∣∣∣
≤C∥η∥L∞

t ,x
∥√φϵ∂x(u −uϵ)∥L2

t ,x
∥√φϵ∂xu∥L2

t ,x

≤C∥η∥L∞
t ,x
∥√φϵ∂x(u −uϵ)∥2

L2
t ,x
+C∥η∥L∞

t ,x
∥√φϵ∂xuϵ∥2

L2
t ,x

≤Cδ∥√φϵ∂x(u −uϵ)∥2
L2

t ,x
+C (δ, v+, s,ϵ),

by using ∂xuϵ =−s∂x vϵ and ∥η∥∞ ≤ δ. Hence we obtain the following estimate (up
to reducing δ):∫

R
|u −uϵ|2(t ) d x +

∫ t

0

∫
R
φϵ(vϵ)|∂x(u −uϵ)|2 d x ≤

∫
R
|u −uϵ|2(0) d x +C (δ, v+, s,ϵ).

We now wish to find an estimate for ∂x (u−uϵ). Notice that (6.89) has the same structure
as the equation for V (i.e. (6.33)), up to the source term. As we did for V , we define

µ :=µ(∂xu) = ∂x(u −uϵ)

vϵ−1
. (6.96)

The computations that we did for V imply that µ is solution of

∂tµ−∂x(φϵ(vϵ)∂xµ)+Lϵ(µ) = ∂xG

vϵ−1
, (6.97)

where Lϵ is the same as in Equation (6.37). Multiplying by µ and integrating yields

1

2

∫
R
µ2(t )+

∫ t

0

∫
R
φϵ(vϵ)(∂xµ)2 = 1

2

∫
R
µ2|t=0 −

∫ t

0

∫
R
Lϵ(µ)µ+

∫ t

0

∫
R
µ
∂xG

vϵ−1
. (6.98)

By (6.39), for α= 1/2, there exists C > 0 such that∣∣∣∣∫ t

0

∫
R
Lϵ(µ)µ

∣∣∣∣≤ 1

2

∫ t

0

∫
R
φϵ(vϵ)(∂xµ)2 +C

∫ t

0

∫
R
φϵ(vϵ)[∂x(u −uϵ)]2.

The first integral can be absorbed by the left-hand side of (6.98). The second integral
can be bounded by using the energy estimate satisfied by u−uϵ. Hence it is enough to
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bound the last integral in the right-hand side of (6.98). We compute that∫ t

0

∫
R
µ
∂xG

vϵ−1

=−
∫ t

0

∫
R
∂xµ

G

vϵ−1
+

∫ t

0

∫
R
µ
∂x vϵG

(vϵ−1)2

=−
∫ t

0

∫
R
∂xµ∂x(φϵ(v)−φϵ(vϵ))µ−

∫ t

0

∫
R
∂xµ∂x(φϵ(v)−φϵ(vϵ))

∂xuϵ
vϵ−1

−
∫ t

0

∫
R
∂xµ(φϵ(v)−φϵ(vϵ))

∂2
x(u −uϵ)

vϵ−1
−

∫ t

0

∫
R
∂xµ(φϵ(v)−φϵ(vϵ))

∂2
xuϵ

vϵ−1

+
∫ t

0

∫
R

µ∂x vϵ
vϵ−1

∂x(φϵ(v)−φϵ(vϵ))µ+
∫ t

0

∫
R

µ∂x vϵ
vϵ−1

∂x(φϵ(v)−φϵ(vϵ))
∂xuϵ
vϵ−1

+
∫ t

0

∫
R

µ∂x vϵ
(vϵ−1)2

(φϵ(v)−φϵ(vϵ))∂2
x(u −uϵ)+

∫ t

0

∫
R

µ∂x vϵ
(vϵ−1)2

(φϵ(v)−φϵ(vϵ))∂2
xuϵ

=:
8∑

k=1
Ik .

By (6.91) and Young’s inequality, for any α> 0,

|I1| ≤C
∫ t

0

∫
R
φϵ(vϵ)|µ∂xµ|

(
∂x vϵ|η|
vϵ−1

+ |∂2
xV |

vϵ−1

)
≤C∥√φϵ∂xµ∥L2

t ,x

(
1

ϵ
∥√φϵ∂x(u −uϵ)∥L2

t ,x
∥η∥L∞

t ,x
+∥µ∥L∞

t L2
x

∥∥∥∥√
φϵ

∂2
xV

vϵ−1

∥∥∥∥
L2

t L∞
x

)

≤α∥√φϵ∂xµ∥2
L2

t ,x
+ Cδ2

α

(
1

ϵ2
∥√φϵ∂x(u −uϵ)∥2

L2
t ,x
+∥µ∥2

L∞
t L2

x

)
,

where the last line uses the fact that

∥η∥L∞ +
∥∥∥∥√

φϵ
∂2

xV

vϵ−1

∥∥∥∥
L2

t L∞
x

≤ C

ϵ3/2
δϵ3/2 ≤Cδ.

(see Equation (6.84)). Similarly,

|I2| ≤ C
∫ t

0

∫
R
φϵ(vϵ)|∂xµ|

(
∂x vϵ|η|
vϵ−1

+ |∂2
xV |

vϵ−1

)
∂xuϵ
vϵ−1

≤α∥√φϵ∂xµ∥2
L2

t ,x
+ C

α

(
∥√φϵ∂xV ∥2

L2
t ,x
∥ ∂x vϵ

(vϵ−1)2
∥2

L∞
t ,x
+∥√φϵ

∂2
xV

vϵ−1
∥2

L2
t ,x

)
∥ ∂xuϵ

vϵ−1
∥2

L∞
t ,x

≤α∥√φϵ∂xµ∥2
L2

t ,x
+C (α,ϵ,δ, s, v+,γ).
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By (6.90),

|I3| ≤ C
∫ t

0

∫
R
φϵ|∂xµ||η|

|∂2
x(u −uϵ)|
vϵ−1

≤α∥√φϵ∂xµ∥2
L2

t ,x
+ Cδ2

α

(
∥√φϵ∂xµ∥2

L2
t ,x
+ 1

ϵ2
∥√φϵ∂x(u −uϵ)∥2

L2
t ,x

)
by using

∂2
x(u −uϵ)

vϵ−1
= ∂xµ+ ∂x vϵ∂x(u −uϵ)

(vϵ−1)2
.

Then,

|I4| ≤C
∫ t

0

∫
R
φϵ|∂xµ||η|

∂2
xuϵ

vϵ−1
≤α∥√φϵ∂xµ∥2

L2
t ,x
+ Cδ2

α
∥√φϵ

∂2
xuϵ

vϵ−1
∥2

L2
t ,x

≤α∥√φϵ∂xµ∥2
L2

t ,x
+C (α,ϵ,δ, s, v+,γ),

|I5| ≤ C
∫ t

0

∫
R
µ2φϵ

∂x vϵ
vϵ−1

(
∂x vϵ|η|
vϵ−1

+ |∂2
xV |

vϵ−1

)
≤ Cδ

ϵ2

∫ t

0

∫
R
φϵ[∂x(u −uϵ)]2 + 1

ϵ
∥µ∥L∞

t L2
x
∥√φϵ∂x(u −uϵ)∥L2

t ,x

∥∥∥∥√
φϵ

∂2
xV

vϵ−1

∥∥∥∥
L2

t L∞
x

≤α∥µ∥2
L∞

t L2
x
+C (α,ϵ,δ, s, v+,γ),

|I6| ≤ C
∫ t

0

∫
R
|µ|φϵ ∂x vϵ

vϵ−1

(
∂x vϵ|η|
vϵ−1

+ |∂2
xV |

vϵ−1

)
∂xuϵ
vϵ−1

≤C

ϵ2

∥∥∥√
φϵ∂x(u −uϵ)

∥∥∥
L2

t ,x

(
1

ϵ

∥∥∥√
φϵ∂xV

∥∥∥
L2

t ,x

+
∥∥∥∥√

φϵ
∂2

xV

vϵ−1

∥∥∥∥
L2

t ,x

)
≤C (ϵ,δ, s, v+,γ),

|I7| ≤C
∫ t

0

∫
R
|µ|φϵ|η|

∂x vϵ∂2
x(u −uϵ)

(vϵ−1)2

≤C

ϵ
∥η∥L∞

t ,x

∥∥∥√
φϵ∂x(u −uϵ)

∥∥∥
L2

t ,x

(∥∥∥√
φϵ∂xµ

∥∥∥
L2

t ,x

+ 1

ϵ

∥∥∥√
φϵ∂x(u −uϵ)

∥∥∥
L2

t ,x

)
≤α

∥∥∥√
φϵ∂xµ

∥∥∥2

L2
t ,x

+C (α,ϵ,δ, v+, s,γ),
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and

|I8| ≤C
∫ t

0

∫
R
|µ|φϵ|η|

∂x vϵ|∂2
xuϵ|

(vϵ−1)2
≤ C

ϵ3

∥∥∥√
φϵ∂x(u −uϵ)

∥∥∥
L2

t ,x

∥∥∥√
φϵ∂xV

∥∥∥
L2

t ,x

≤C (ϵ,δ, s, v+,γ).

Hence, coming back to Equation (6.98), by taking α > 0 sufficiently small, up to
reducing δ, we obtain that there exists α0 > 0 such that

α0

(∥∥µ∥∥2
L∞

t L2
x
+

∥∥∥√
φϵ∂xµ

∥∥∥2

L2
t ,x

)
≤ 1

2
∥µ0∥2

L2
x
+C (α0,ϵ,δ, s, v+,γ),

with C (α0,ϵ,δ, s, v+,γ) →+∞ as ϵ→ 0.
With this estimate, the existence and uniqueness of u −uϵ is classical. It remains to

verify that u −uϵ is continuous in time. Let f ∈ H 1(R) with ∥ f ∥H 1(R) = 1. Then using
∂t (v − vϵ) = ∂x(u −uϵ), we have

〈∂t (v − vϵ), f 〉H−1×H 1 = (∂x(u −uϵ), f ) = (u −uϵ,∂x f )

≤ ∥(u −uϵ)(t )∥L2
x

and so ∥∂t (v − vϵ)∥L∞
t H−1

x
≤ ∥u −uϵ∥L∞

t L2
x
. Since v − vϵ = ∂xV , we have that ∂t∂xV ∈

L∞(0,T ; H−1(R)) ⊂ L2(0,T ; H−1(R)). Since we also have ∂xV ∈ L2(0,T, H 2(R)), it follows
(e.g. from Theorem II.5.13. of Franck Boyer et al. 2012) that ∂xV ∈C ([0,T ]; H 1(R)) and
so V ∈C ([0,T ]; H 2(R)). Now since w = u−φϵ(v)∂x v and wϵ = uϵ−φϵ(vϵ)∂x vϵ, we have
that ∂xW0 = u −uϵ+φ′

ϵ(v)∂x v −φ′
ϵ(vϵ)∂x vϵ. After rearranging, we find that

u −uϵ = ∂xW0 −φ′
ϵ(v)∂xV + (φ′

ϵ(v)−φ′
ϵ(vϵ))∂x vϵ.

The continuity in time of W0, vϵ,φ′
ϵ(v) and V imply that u −uϵ ∈ C ([0,T ]; H 1(R)) as

claimed.

4.2. Bounding (v − vϵ) in L1(R)

We first obtain a L1
x bound for u−uϵ. Let { jn}n∈N ⊂C 2(R) be a convex approximation

of | · | with | j ′n | ≤ C , j ′′n > 0. For example, we may take jn(z) :=
p

z2 +n−1 −
p

n−1.
Multiplying (6.89) by j ′n(u −uϵ), we get∫

R
jn(u −uϵ)(t ) d x −

∫
R

jn(u −uϵ)(0) d x +
∫ t

0

∫
R

j ′′n (u −uϵ)φϵ(v)|∂x(u −uϵ)|2

=
∫ t

0

∫
R

j ′n(u −uϵ)
(
(φϵ(v)−φϵ(vϵ))∂2

xuϵ+ (∂xφϵ(v)−∂xφϵ(vϵ))∂xuϵ
)

.

(6.99)
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Using ∂xuϵ =−s∂x vϵ, (6.90), (6.91) and (6.58), the right-hand side can be bounded by

C
∫ t

0

∫
R
φϵ(vϵ)∂xV

|∂2
x vϵ|

vϵ−1
+C

∫ t

0

∫
R
φϵ(vϵ)

(
∂x vϵ|∂xV |
(vϵ−1)2

+ |∂2
xV |

vϵ−1

)
∂x vϵ

≤C∥√φϵ∂xV ∥L2
t ,x

∥∥∥∥√
φϵ

∂2
x vϵ

vϵ−1

∥∥∥∥
L2

t ,x

+C∥√φϵ∂x vϵ∥L2
t ,x

(
∥√φϵ

∂2
xV

vϵ−1
∥L2

t ,x
+

∥∥∥∥ v ′
ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥√φϵ∂xV ∥L2
t ,x

)
.

By Lemma 6.3, ∥∥∥∥√
φϵ

∂2
x vϵ

vϵ−1

∥∥∥∥
L2

t ,x

+∥√φϵ∂x vϵ∥L2
t ,x

≤C (s,γ, v+,ϵ)t 1/2,

Hence we obtain a global bound of the form C (ϵ,δ, s, v+,γ)t 1/2 for the right-hand
side. Note that the second term on the left-hand side of (6.99) has a positive sign and
therefore can be discarded. Returning to (6.99) and taking n →∞, we get

∥(u −uϵ)(t )∥L1
x
≤ ∥(u −uϵ)(0)∥L1

x
+C (ϵ,δ, s, v+,γ)t 1/2. (6.100)

We now wish to find an estimate for v − vϵ. From (6.5) we have that

∂t (v − vϵ) = ∂x(u −uϵ).

Multiplying this equation by j ′n(v − vϵ) where jn is defined as above and integrating in
space, we have

d

d t

∫
R

jn(v − vϵ) d x =
∫
R

j ′n(v − vϵ)∂x(u −uϵ) d x ≤
∫
R
|∂x(u −uϵ)| d x. (6.101)

Therefore, to obtain a L1(R) estimate for v − vϵ it is sufficient to bound ∂x(u −uϵ) in
L1(R). Now, the evolution equation of ∂x(u −uϵ) can be expressed as

∂t∂x(u −uϵ)−∂x(φϵ(v)∂2
x(u −uϵ))

=∂x
(
(φϵ(v)−φϵ(vϵ))∂2

xuϵ
)+∂x[∂x(φϵ(v)−φϵ(vϵ))∂xu]+∂x[∂xφϵ(vϵ)∂x(u −uϵ)].
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Multiplying by j ′n(∂x(u −uϵ)) and integrating by parts where appropriate,∫
R

jn(∂x(u −uϵ))(t ) d x −
∫
R

jn(∂x(u −uϵ))(0) d x

+
∫ t

0

∫
R

j ′′n (∂x(u −uϵ)) φϵ(v)|∂2
x(u −uϵ)|2

=
∫ t

0

∫
R

j ′n(∂x(u −uϵ))∂x
(
(φϵ(v)−φϵ(vϵ))∂2

xuϵ)
)

+
∫ t

0

∫
R

j ′n(∂x(u −uϵ))∂x[∂x(φϵ(v)−φϵ(vϵ))∂xu]

+
∫ t

0

∫
R

j ′n(∂x(u −uϵ))∂x
[
∂xφϵ(vϵ)∂x(u −uϵ)

]=:
3∑

n=1
In .

(6.102)

Firstly using (6.91),

|I1| =
∣∣∣∣∫ t

0

∫
R

j ′n(∂x(u −uϵ))
(
(∂xφϵ(v)−∂xφϵ(vϵ))∂2

xuϵ+ (φϵ(v)−φϵ(vϵ)∂
3
xuϵ

)∣∣∣∣
≤C

∫ t

0

∫
R
| j ′n(∂x(u −uϵ))|φϵ(vϵ)

(
|∂2

x vϵ|
(
∂x vϵ|∂xV |
(vϵ−1)2

+ |∂2
xV |

vϵ−1

)
+ |∂3

x vϵ|
vϵ−1

|∂xV |
)

≤
∥∥∥∥√

φϵ
∂3

x vϵ
vϵ−1

∥∥∥∥
L2

t ,x

∥√φϵ∂xV ∥L2
t ,x

+
∥∥∥∥√

φϵ
∂2

x vϵ
vϵ−1

∥∥∥∥
L2

t ,x

(
C

ϵ
∥√φϵ∂xV ∥L2

t ,x
+∥√φϵ∂

2
xV ∥L2

t ,x

)
≤C (ϵ,δ, s, v+,γ)t 1/2.

Then

I2 =
∫ t

0

∫
R

j ′n(∂x(u −uϵ))∂2
x[φϵ(v)−φϵ(vϵ)]∂xu +

∫ t

0

∫
R

j ′n(∂x(u −uϵ))∂x[φϵ(v)−φϵ(vϵ)]∂2
xu

=: K1 +K2.

Using (6.92),

|K1| ≤C
∫ t

0

∫
R
φϵ(vϵ)

(
(∂x vϵ)2|∂xV |

(vϵ−1)3
+ ∂x vϵ|∂2

xV |
(vϵ−1)2

+
∣∣∣∣ ∂2

xV

vϵ−1

∣∣∣∣2

+ |∂3
xV |

vϵ−1

)
|∂xu|

≤C∥√φϵ∂xu∥L2
t ,x

(
∥√φϵ∂xV ∥L2

t ,x
+

∥∥∥∥√
φϵ

∂2
xV

vϵ−1

∥∥∥∥
L2

t ,x

+
∥∥∥∥√

φϵ
∂3

xV

vϵ−1

∥∥∥∥
L2

t ,x

+
∥∥∥∥√

φϵ
∂2

xV

vϵ−1

∥∥∥∥
L2L∞

∥∥∥∥ ∂2
xV

vϵ−1

∥∥∥∥
L∞L2

)
,
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and the triangle inequality

∥√φϵ∂xu∥L2
t ,x

≤ ∥√φϵ∂x(u −uϵ)∥L2
t ,x
+∥√φϵ∂xuϵ∥L2

t ,x

enables to bound K1. For K2, (6.91) yields

|K2| ≤C
∫ t

0

∫
R
φϵ(vϵ)

(
∂x vϵ|∂xV |
(vϵ−1)2

+ |∂2
xV |

vϵ−1

)
|∂2

xu|

≤
(∥∥∥√

φϵ∂xV
∥∥∥

L2
t ,x

+
∥∥∥∥√

φϵ
∂2

xV

vϵ−1

∥∥∥∥
L2

t ,x

)(∥∥∥√
φϵ∂

2
x(u −uϵ)

∥∥∥
L2

t ,x

+
∥∥∥√

φϵ∂
2
xuϵ

∥∥∥
L2

t ,x

)
.

For I3, we decompose

|I3| =C

∣∣∣∣∫ t

0

∫
R

j ′n
[(
φ′′
ϵ (vϵ)(∂x vϵ)

2 +φ′
ϵ(vϵ)∂

2
x vϵ

)
∂x(u −uϵ)+φ′

ϵ(vϵ)∂x vϵ∂
2
x(u −uϵ)

]∣∣∣∣
≤C

[∥∥∥∥φ′′
ϵ (vϵ)v ′

ϵ

φϵ(vϵ)

∥∥∥∥
L∞

t ,x

∥√φϵ∂x vϵ∥L2
t ,x
+

∥∥∥∥φ′
ϵ(vϵ)(vϵ−1)

φϵ(vϵ)

∥∥∥∥
L∞

t ,x

∥∥∥∥√
φϵ

∂2
x vϵ

vϵ−1

∥∥∥∥
L2

t ,x

]
∥×√

φϵ∂x(u −uϵ)∥L2
t ,x

+C

∥∥∥∥φ′
ϵ(vϵ)(vϵ−1)

φϵ(vϵ)

∥∥∥∥
L∞

t ,x

∥√φϵ∂x vϵ∥L2
t ,x

∥∥∥∥√
φϵ
∂2

x(u −uϵ)

vϵ−1

∥∥∥∥
L2

t ,x

.

Passing to the limit n →∞ with the help of Fatou’s lemma gives us

∥∂x(u −uϵ)(t )∥L1
x
≤ ∥∂x(u −uϵ)(0)∥L1

x
+C (ϵ,δ, s, v+,γ)t 1/2. (6.103)

We have now shown that (u −uϵ)(t), (v − vϵ)(t) belong to L1(R) for any t > 0. Note
that since the equations for both quantities are conservative, we actually have that
(u −uϵ)(t ), (v − vϵ)(t ) ∈ L1

0(R). This marks the end of the proof of Proposition 6.3.

4.3. Concluding the proofs of Theorem 6.2 and Corollary 6.1
We are now in a position to justify the equivalence between the original and in-

tegrated systems, which will allow us to conclude the proof of Theorem 6.2. Firstly,
consider the original system with some initial data (u0, v0) which satisfies the assump-
tions of Theorem 6.2, and let (V ,W ) be the corresponding solution of the integrated
system (6.25). Since we defined (u, v) := (uϵ+∂xU , vϵ+∂xV ), it follows that (u, v) is a so-
lution to the original system. Moreover, Lemma 6.8 tells us that ∂xU ∈C ([0,T ]; H 1(R))
and Theorem 6.1 tells us that ∂xV ∈ C ([0,T ]; H 1(R))∩L2(0,T ; H 2(R)). Thus, (u, v) ∈
(uϵ, vϵ)+ (C ([0,T ]; H 1(R)))2 solves the original system and using Proposition 6.3 we
have that (u, v)(t) ∈ L1

0(R) for any t ∈ (0,T ]. It remains to show that the solution is
unique. To this end, suppose that (u, v) is another solution to the original system
with initial data (u0, v0) satisfying the assumptions of Theorem 6.2. Then we may
write (u, v) = (uϵ, vϵ)+ ( f , g ) for some f , g ∈C ([0,T ]; H 1(R)∩L1

0(R)). Now, define the
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integrated quantities

U (t , x) :=
∫ x

−∞
(u(t , z)−uϵ(t , z)) d z, V (t , x) :=

∫ x

−∞
(v(t , z)− vϵ(t , z)) d z,

and
W :=U +φϵ(v)−φϵ(vϵ).

Then (V ,W ) is a solution of the integrated system (6.25). Furthermore, thanks to
the hypotheses on the initial data (u, v) we have that ∂xV ∈C ([0,T ]; H 1(R)∩L1

0(R))∩
L2(0,T ; H 2(R)). Therefore V ∈ X . Moreover, due to the assumptions on the initial
data, we in fact have V ∈ Bδ and so since A ϵ is a contraction on Bδ we easily deduce
that V is uniquely determined by the initial data. Since W is constant in time, we
conclude that the pair (W,V ) is unique and therefore so is (u, v).

Finally, let us explain how Corollary 6.1 is obtained. With the additional assumption
(6.18), the inequality (6.73) becomes

sup
t∈[0,T ]

(
2∑

k=0
ckϵ

2k
[

Ek (t ;V2)+
∫ t

0
Dk (τ;V2) dτ

])

≤C (E0(0;V2)+ϵ2E1(0;V2)+ϵ4E2(0;V2))+ C

ϵ3/2
∥V1∥2

X ∥V2∥X ,

(6.104)

and so we may take T =+∞ which gives us a solution defined on R+×R. Then using
(6.48) we have that there exists C > 0 independent of time such that

∥(v − vϵ)(t )∥L∞
x
≤C∥(v − vϵ)(t )∥1/2

L2
x
∥∂x(v − vϵ)(t )∥1/2

L2
x

, (6.105)

where the right hand-side tends to 0 as t →∞ since V ∈ L2(R+; H 2(R)). This shows
that (v − vϵ)(t ) → 0 as t →∞. Similarly, the bounds obtained in Lemma 6.8 imply that

∥(u −uϵ)(t )∥H 1
x
→ 0 as t →∞

and so we also find that (u −uϵ)(t ) → 0 as t →∞, which completes the proof.

5. Appendix

5.1. Proof that the map A ϵ is well defined
We give here a proof that the map A ϵ of Section 3.3 is well defined, i.e. we show that

Equation (6.43): {
∂t V2 −∂xW0 −∂x(φϵ(vϵ)∂xV2) = ∂x H(∂xV1),

V2|t=0 =V0,

is well posed. Equation (6.43) rewrites as
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{
∂t V2 = ∂x(φϵ∂xV2)+ f ,

V2|t=0 =V0,
(6.106)

where f = ∂x H(∂xV1)+∂xW0. Since the operator ∂x(φϵ∂x ·) is uniformly elliptic, one
can hope that it is the infinitesimal generator of an analytic evolution operator
(U (t ,τ))t ,τ≥0. The unique solution of (6.106) is then given by

V2(t ) =U (t ,0)V0 +
∫ t

0
U (t ,τ) f (τ)dτ.

The proof that ∂x(φϵ∂x ·) generates an analytic evolution operator is classical. Note
that one has to be careful because the coefficient φϵ =φϵ(t , x) depends on time and is
unbounded. In order to simplify the situation, we take advantage of the fact that φϵ
is a function of the variable ξ := x − st . A change of variable (t , x) 7→ (t ,ξ) ∈ (0,T )×R
then yields that (6.106) can be written as{

∂t V2 = ∂ξ(φϵ(ξ)∂ξV2)+ s∂ξV2 + f ,

V2|t=0 =V0,

Hence in these coordinates, the operator ∂ξ(φϵ(ξ)∂ξ·)+ s∂ξ is independant of time.
Consider the Hilbert space H = L2(R,C), and define the unbounded operator

TcV :=φ1/2
ϵ ∂ξV , with D(Tc ) =C∞

c (R).

Let T be the closure of Tc , i.e.

D(T ) = {V ∈ H ,φ1/2
ϵ ∂ξV ∈ H ,∃Vn ∈C∞

c (R),Vn →V ,φ1/2
ϵ ∂ξVn →φ1/2

ϵ ∂ξV }.

The adjoint T ∗ of T is given by

D(T ∗) = {V ∈ H ,∂ξ(φ1/2
ϵ V ) ∈ H }, with T ∗V =−∂ξ(φ1/2

ϵ V ).

Indeed, if V ∈ D(T ∗), then T ∗V =−∂ξ(φ1/2
ϵ V ) in the sense of distributions. Conversely,

if V and ∂ξ(φ1/2
ϵ V ) ∈ H , then < −∂ξ(φ1/2

ϵ V ),ψ >H=< V ,Tψ >H for every ψ ∈ C∞
c (R),

and the same is true for every ψ ∈ D(T ) by density.
Since T is closed and densely defined, T ∗T defined by

D(T ∗T ) = {V ∈ D(T ),T V ∈ D(T ∗)}, T ∗T V = T ∗(T V ) =−∂ξ(φϵ(ξ)∂xV )

is self-adjoint and positive (see Theorem 13.13 in Rudin 1991, Chapter 13). It follows
that −T ∗T is the infinitesimal generator of an analytic semigroup. Now define the
closed operator B := s∂ξ, with D(B) = H 1(R). Since there exists α> 0 such that φϵ ≥α,
we deduce that D(T ∗T ) ⊂ D(T ) ⊂ D(B). Furthermore, for every ϵ > 0, for every V ∈
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D(T ∗T ), one has that

∥BV ∥ ≤ s

α
∥T V ∥ = s

α
| <V ,T ∗T V >H |1/2 ≤ s

α
∥V ∥1/2∥T ∗T V ∥1/2

≤ϵ∥T ∗T V ∥+ s2

4α2ϵ
∥V ∥,

by Young’s inequality. By Theorem 12.37 in Renardy et al. 2006, it follows that −T ∗T +B
is the infinitesimal generator of an analytic semigroup.

Note that in fact it is possible to prove that

D(T ) = {V ∈ H ,φ1/2
ϵ ∂xV ∈ H }.

Indeed, let θ a smooth function such that 0 ≤ θ ≤ 1, θ|[− 1
3 , 1

3 ] ≡ 1, supp(θ) ⊂ [−1,1] and∫
Rθ = 1. For V ∈ H with φ1/2

ϵ ∂ξV ∈ H , define

Vn(ξ) := θ
(
ξ

n

)
(ρn ∗V )(ξ),

where ρn := nθ(n·) ∈ C∞
c (R) is an approximation of unity. Then Vn ∈ C∞

c (R) and
Vn →V in L2. Furthermore,

φ1/2
ϵ ∂ξVn = φ1/2

ϵ

n
θ′

(
ξ

n

)
(ρn ∗V )(ξ)+φ1/2

ϵ θ

(
ξ

n

)
(ρn ∗∂ξV )(ξ).

Since φ1/2
ϵ (ξ) ≤C (1+|ξ|1/2+1/(2γ)) and θ is compactly supported,∣∣∣∣φ1/2

ϵ

n
θ′

(
ξ

n

)∣∣∣∣≤C n1/(2γ)−1/21n/3≤|ξ|≤n .

Hence

φ1/2
ϵ

n
θ′

(
ξ

n

)
(ρn ∗V )(ξ) → 0 and φ1/2

ϵ θ

(
ξ

n

)
(ρn ∗∂ξV )(ξ) →φ1/2

ϵ ∂ξV.

Hence V ∈ D(T ).

5.2. Proof of Lemma 6.5
We give here the proof of Lemma 6.5.
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Proof. We first do the computations of the estimate for Lϵ. We compute that∫ t

0

∫
R
Lϵ(η)η=

∫ t

0

∫
R

sη2v ′
ϵ

vϵ−1
d xdτ+

∫ t

0

∫
R

φϵ(vϵ)v ′
ϵ

vϵ−1
η

(
∂xη+

ηv ′
ϵ

vϵ−1

)
d xdτ

+
∫ t

0

∫
R
η∂x

(
ηφϵ(vϵ)v ′

ϵ

vϵ−1

)
d xdτ+

∫ t

0

∫
R

η

vϵ−1
∂x(φ′

ϵ(vϵ)v ′
ϵ(vϵ−1)η) d xdτ

= :
4∑

k=1
Ik .

Let us fix α ∈ (0,1). For I1, we exploit the smallness of v ′
ϵ (i.e. (6.47)) to get

|I1| =
∣∣∣∣∫ t

0

∫
R

sη2v ′
ϵ

vϵ−1
d xdτ

∣∣∣∣≤ ∥∥∥∥ sv ′
ϵ

φϵ(vϵ−1)3

∥∥∥∥
L∞

t ,x

∫ t

0

∫
R
|√φϵ∂xV |2 ≤ C

ϵ2

∫ t

0
D0(τ;V ) dτ.

Next,

|I2| =
∣∣∣∣∫ t

0

∫
R

v ′
ϵφϵ

vϵ−1
η

(
∂xη+

ηv ′
ϵ

vϵ−1

)
d xdτ

∣∣∣∣
≤

∫ t

0

∫
R

∣∣∣∣ v ′
ϵφϵ

vϵ−1

∣∣∣∣ |η||∂xη|+
∫ t

0

∫
R

∣∣∣∣ v ′
ϵφϵ

vϵ−1

v ′
ϵ∂xV

(vϵ−1)2

∂xV

vϵ−1

∣∣∣∣
≤

∥∥∥∥ v ′
ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥√φϵ∂xV ∥L2
t ,x
∥√φϵ∂xη∥L2

t ,x
+

∥∥∥∥ (v ′
ϵ)

2

(vϵ−1)4

∥∥∥∥
L∞

t ,x

∥√φϵ∂xV ∥2
L2

t ,x

≤ C

ϵ

(∫ t

0
D0(τ;V ) dτ

) 1
2
(∫ t

0
D1(τ;V ) dτ

) 1
2

+ C

ϵ2

∫ t

0
D0(τ;V ) dτ

≤ α

3

∫ t

0
D1(τ;V ) dτ+ C

αϵ2

∫ t

0
D0(τ;V ) dτ,

where we used Young’s inequality for the last line. Similarly,

|I3| =
∣∣∣∣∫ t

0

∫
R
η∂x

(
ηφϵ(vϵ)v ′

ϵ

vϵ−1

)
d xdτ

∣∣∣∣
≤

∫ t

0

∫
R
|∂xη|

∣∣∣∣ηv ′
ϵφϵ

vϵ−1

∣∣∣∣≤ ∥∥∥∥ v ′
ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥√φϵ∂xη∥L2
t ,x
∥√φϵ∂xV ∥L2

t ,x

≤ α

3

∫ t

0
D1(τ;V ) dτ+ C

αϵ2

∫ t

0
D0(τ;V ) dτ.

To deal with the last term, we first integrate by parts to get

I4 =
∫ t

0

∫
R

η

vϵ−1
∂x(φ′

ϵ(vϵ)v ′
ϵ(vϵ−1)η) d xdτ

=−
∫ t

0

∫
R

∂xη

vϵ−1
v ′
ϵφ

′
ϵ∂xV +

∫ t

0

∫
R

(v ′
ϵ)

2η

(vϵ−1)2
φ′
ϵ∂xV.
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Then in the same spirit as the previous estimates and with the estimate (6.46) on φ′
ϵ,

|I4| ≤
∥∥∥∥ v ′

ϵ

(vϵ−1)2

∥∥∥∥
L∞

t ,x

∥√φϵ∂xη∥L2
t ,x
∥√φϵ∂xV ∥L2

t ,x
+

∥∥∥∥ (v ′
ϵ)

2

(vϵ−1)4

∥∥∥∥
L∞

t ,x

∥√φϵ∂xV ∥2
L2

t ,x

≤ α

3

∫ t

0
D1(τ;V ) dτ+ C

αϵ2

∫ t

0
D0(τ;V ) dτ.

We finally put all terms together to obtain that∣∣∣∣∫ t

0

∫
R
Lϵ(η)η

∣∣∣∣≤ 4∑
k=1

|Ik | ≤α
∫ t

0
D1(τ;V )dτ+ C

αϵ2

∫ t

0
D0(τ;V )dτ.

We now move on to the proof of the second estimate. Again, we fix α ∈ (0,1) and
compute that∫ t

0

∫
R
∂xη Cϵ(η) =−

∫ t

0

∫
R
∂xφϵ∂

2
xη∂xη+

∫ t

0

∫
R
η∂xη∂x

(
sv ′

ϵ

vϵ−1

)

+
∫ t

0

∫
R

(∂xη)2∂x

(
φϵ

v ′
ϵ

vϵ−1

)
+

∫ t

0

∫
R
η∂xη∂x

(
(v ′
ϵ)

2φϵ(vϵ)

(vϵ−1)2

)

+
∫ t

0

∫
R
∂xη∂x

(
η∂x

(
v ′
ϵφϵ(vϵ)

vϵ−1

))
−

∫ t

0

∫
R
∂xη

v ′
ϵ∂x(φ′

ϵ(vϵ)v ′
ϵ(vϵ−1)η)

(vϵ−1)2

+
∫ t

0

∫
R

∂xη

vϵ−1
∂x(∂x(v ′

ϵφ
′
ϵ(vϵ)(vϵ−1))η) =:

7∑
n=1

Kn .

We can estimate each of these terms using the same strategy as our estimates for I1−I4.
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This leads to

|K1| ≤
∥∥∥∥∂xφϵ

φϵ

∥∥∥∥
L∞

t ,x

∥√φϵ∂
2
xη∥L2

t ,x
∥√φϵ∂xη∥L2

t ,x
≤ α

6

∫ t

0
D2(τ;V ) dτ+ C

αϵ2

∫ t

0
D1(τ;V ) dτ,

|K2| =
∣∣∣∣∫ t

0

∫
R

sv ′
ϵ

vϵ−1

(
(∂xη)2 +η∂2

xη
)∣∣∣∣

≤α
6

∫ t

0
D2(τ;V ) dτ+ C

ϵ2

∫ t

0
D1(τ;V ) dτ+ C

αϵ4

∫ t

0
D0(τ;V ) dτ,

|K3| =2

∣∣∣∣∫ t

0
φϵ

v ′
ϵ

vϵ−1
∂2

xη∂xη

∣∣∣∣≤ α

6

∫ t

0
D2(τ;V ) dτ+ C

αϵ2

∫ t

0
D1(τ;V )dτ,

|K4| =
∣∣∣∣∫ t

0

∫
R

(v ′
ϵ)

2φϵ

(vϵ−1)2

(
η∂2

xη+ (∂xη)2)∣∣∣∣
≤α

6

∫ t

0
D2(τ;V ) dτ+ C

ϵ2

∫ t

0
D1(τ;V ) dτ+ C

ϵ4

∫ t

0
D0(τ;V ) dτ,

|K5| =
∣∣∣∣∫ t

0

∫
R
∂x

(
φϵ

v ′
ϵ

vϵ−1

)
η∂2

xη

∣∣∣∣ ,

and we compute with the estimate (6.46) and Lemma 6.1 that∣∣∣∣∂x

(
φϵ

v ′
ϵ

vϵ−1

)∣∣∣∣≤ C

ϵ2
φϵ(vϵ−1)2γ ≤ C

ϵ2
φϵ,

hence

|K5| ≤ α

6

∫ t

0
D2(τ;V ) dτ+ C

αϵ4

∫ t

0
D0(τ;V ) dτ.

Next,

K6 =−
∫ t

0

∫
R

(∂xη)2 v ′
ϵφ

′
ϵ(vϵ)v ′

ϵ(vϵ−1)

(vϵ−1)2
−

∫ t

0

∫
R
η∂xη

v ′
ϵ∂x(φ′

ϵ(vϵ)v ′
ϵ(vϵ−1))

(vϵ−1)2
.

With the estimate (6.46) and Lemma 6.1, we see that∣∣∂x[φ′
ϵv ′

ϵ(vϵ−1)]
∣∣≤ C

ϵ
(vϵ−1)γ. (6.107)

Hence

|K6| ≤ C

ϵ2

∫ t

0
D1(τ;V ) dτ+ C

ϵ4

∫ t

0
D0(τ;V ) dτ.

To estimate K7, we first integrate by parts to obtain

K7 =−
∫ t

0

∫
R

η∂2
xη

vϵ−1
∂x[φ′

ϵv ′
ϵ(vϵ−1)]+

∫ t

0

∫
R

η2∂xη

(vϵ−1)2
v ′
ϵ∂x[φ′

ϵv ′
ϵ(vϵ−1)].
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Then using again (6.107) and the Holder and Young inequalities,

|K7| ≤ C

ϵ
∥√φϵ∂xV ∥L2

t ,x

(∥∥∥∥ (vϵ−1)γ−2

φϵ

∥∥∥∥
L∞

t ,x

∥√φϵ∂
2
xη∥L2

t ,x
+

∥∥∥∥v ′
ϵ(vϵ−1)γ−3

φϵ

∥∥∥∥
L∞

t ,x

∥√φϵ∂xη∥L2
t ,x

)

≤ C

ϵ2

∫ t

0
D1(τ;V ) dτ+ C

αϵ4

∫ t

0
D0(τ;V ) dτ+ α

6

∫ t

0
D2(τ;V ) dτ.

Summing |K1|, . . . , |K7| finally yields the desired estimate.
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Dans cette thèse, plusieurs contributions ont été apportées concernant la dérivation
et l’analyse mathématique de modèles de fluides complexes, motivées principalement
par la description des phénomènes d’avalanche.

Dans la première partie, on a présenté des résultats concernant la structure ma-
thématique de modèles moyennés de fluides parfaits pour des écoulements cisaillés
ou turbulents. L’hétérogénéité de la vitesse est prise en compte grâce au tenseur de
Reynolds, défini à partir des secondes corrélations des fluctuations de vitesse.

Un premier résultat, qui concerne les écoulements monophasés et barotropes, est
une caractérisation mathématique de la symétrisabilité (au sens de Friedrichs) des
équations moyennées de Reynolds. On montre en effet que ce système d’équations
est symétrisable en dimension 2 ou 3 si, et seulement si, le tenseur de Reynolds s’écrit
comme une matrice scalaire, ou le gradient de la pression s’annule. Ce résultat permet
donc de compléter la compréhension mathématique de ces équations. En effet, ce
système étant non conservatif, il ne peut pas être symétrisé simplement à l’aide d’une
entropie mathématique, et sa symétrisabilité était jusqu’alors inconnue.

Un second résultat concerne les écoulements diphasiques, c’est-à-dire formés par le
mélange de deux phases. Pour ces écoulements, une manière de dériver un modèle en
accord avec les lois de la physique est de définir un lagrangien à partir de l’énergie du
mélange, et d’appliquer le principe de l’action stationnaire de Hamilton. Dans le cas
d’un modèle à deux vitesses pour lequel l’énergie du mélange est simplement définie
comme la somme des énergies de chaque phase, le système obtenu par principe de
Hamilton n’est pas hyperbolique, et des vitesses caractéristiques complexes appa-
raissent lorsque les deux vitesses sont proches. Une contribution de cette thèse est
l’obtention d’une série de modèles d’écoulements diphasiques par principe de Hamil-
ton, qui sont hyperboliques lorsque les deux vitesses sont proches. L’hyperbolicité des
modèles est garantie par la prise en compte du tenseur de Reynolds dans l’énergie du
mélange. Une condition de compatibilité naturelle permet également de caractériser
les énergies de mélange admissibles, pour lesquelles le lagrangien associé permet
d’obtenir des équations hyperboliques lorsque les deux vitesses sont proches. Cette
contribution ouvre la voie à des travaux supplémentaires qui pourraient compléter ce
résultat. D’un point de vue mathématique, l’étude de l’hyperbolicité des équations
pourrait être étendue au cas général de vitesses prenant des valeurs arbitraires. Il
serait en effet pertinent de caractériser avec précision le domaine d’hyperbolicité des
équations. D’un point de vue de modélisation, plusieurs perspectives existent égale-
ment. Il serait tout d’abord intéressant de dériver des équations similaires à celles qui
ont été proposées dans le chapitre 2 à partir de modèles de mélange microscopiques
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ou de modèles de phases séparées avec interfaces. Afin de valider la pertinence des
modèles obtenus pendant cette thèse, un prolongement intéressant de ces travaux
serait de comparer les prédictions théoriques correspondantes avec des résultats
expérimentaux dans un cas d’application concrète.

Dans la deuxième partie de la thèse, on a présenté des modèles décrivant un écou-
lement granulaire en couche mince sur un plan incliné. Ces modèles sont obtenus
à partir de la moyenne sur la profondeur d’équations constitutives données par une
rhéologie frictionnelle empirique (la rhéologie µ(I )). Ils sont constitués de trois équa-
tions, donnant l’évolution de trois variables caractérisant l’écoulement : la hauteur, la
vitesse moyenne, et l’enstrophie, qui est la version unidimensionnelle du tenseur de
Reynolds et qui permet ici de modéliser les effets de cisaillement vertical au sein de
l’écoulement. Ces modèles ont une structure hyperbolique avec des termes sources, et
satisfont un bilan d’énergie, ce qui garantit leur caractère bien posé et une résolution
numérique à l’aide de schémas robustes.

Un premier modèle a été présenté au chapitre 3. Il a été écrit à partir de la rhéolo-
gie µ(I ) incompressible. Sa dérivation a été effectuée à l’aide d’un développement
asymptotique, ce qui a permis de calculer avec précision l’écart entre la loi de friction
granulaire classique, qui est utilisée pour les écoulements moyennés sur la profondeur,
et l’expression de la friction au fond donnée par la rhéologie µ(I ). La prise en compte
de cet écart a permis d’écrire pour la première fois un modèle consistant jusqu’à
l’ordre 1 avec cette rhéologie. La connaissance du cisaillement via l’enstrophie permet
également d’obtenir une reconstruction du profil de vitesse sur la profondeur. Une
version d’ordre deux du modèle, comprenant des termes de diffusion, a également été
proposée. L’étude de la stabilité linéaire du modèle et de la version d’ordre deux a été
effectuée et appliquée à l’instabilité des ondes de surface. On a tout d’abord montré
que cette instabilité apparaît lorsque le nombre de Froude dépasse un seuil critique.
Pour les deux versions du modèle, ce seuil est le même que celui prédit théoriquement
par la rhéologie µ(I ), grâce à la consistance des équations jusqu’à l’ordre 1. Une étude
plus poussée de la relation de dispersion a également montré que le modèle avec
diffusion linéarisé prédit correctement le taux de croissance et la vitesse de phase,
ainsi que la fréquence de coupure à partir de laquelle l’instabilité disparaît. Des ondes
de surface ont été calculées à partir de la résolution numérique des deux modèles.
Les limites de ces modèles ont également été étudiées. Un défaut majeur de ces mo-
dèles est qu’ils ont été écrits à partir des propriétés des écoulements proches d’une
solution stationnaire et uniforme de la rhéologie. Pour un écoulement fortement
instationnaire et/ou non uniforme, rien ne garantit la validité du développement
asymptotique, et donc du modèle proposé. De plus, les écoulements stationnaires et
uniformes n’existent théoriquement que pour une pente comprise entre les limites µ1

et µ2, qui sont deux paramètres de la rhéologie µ(I ). Ces paramètres correspondent à
des pentes à partir desquelles une transition de l’état du milieu granulaire peut être
observée. En effet, pour une pente inférieure à µ1, l’écoulement s’arrête (transition
liquide/solide). De même, pour une pente supérieure à µ2, l’écoulement accélère, la
fraction volumique décroît et la dynamique est dominée par des collisions binaires
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(transition liquide/gaz). Pour une pente qui n’est pas comprise entre ces deux valeurs,
certains coefficients du modèle ne sont pas définis, et leur extrapolation tels quels
pourrait donner des comportements incohérents physiquement et mathématique-
ment. Il est donc important de pouvoir écrire une version régularisée du modèle, qui
puisse être utilisée même lorsque la pente n’est pas comprise entre µ1 et µ2.

Une version régularisée du modèle sans diffusion a donc été présentée au chapitre
4. Un coefficient de régularisation noté f a été introduit. Ce coefficient vaut 1 pour
un écoulement stationnaire et uniforme sur une pente comprise entre µ1 et µ2, et 0
lorsque l’écoulement est loin de cet équilibre (pente en dehors de l’intervalle ]µ1,µ2[,
front sec, écoulement à l’arrêt). Ce coefficient permet donc de quantifier la distance
entre la solution et un écoulement stationnaire et uniforme. Il permet de faire la tran-
sition entre le modèle consistant présenté au chapitre 3 lorsque f = 1, et un modèle
réduit ne tenant compte que des effets physiques essentiels (poids, friction, pression
hydrostatique, enstrophie) lorsque f = 0. Notons que le modèle régularisé est écrit
de telle sorte à ce que la consistance à l’ordre 1 avec la rhéologie µ(I ) soit préservée.
En particulier, le modèle linéarisé au voisinage d’un écoulement stationnaire et uni-
forme reste inchangé, ce qui permet de retrouver la relation de dispersion du modèle
présenté au chapitre 3 et les bonnes propriétés qui en découlent. De plus, des com-
paraisons de simulations numériques avec des données expérimentales montrent
que le modèle régularisé permet de prédire quantitativement des fronts secs, des
arrêts d’avalanche et des écoulements accélérés. Un prolongement de ce travail serait
d’écrire également une version régularisée pour le modèle avec diffusion présenté au
chapitre 3.

Un troisième modèle moyenné sur la profondeur a été proposé au chapitre 5. Ce
modèle a été dérivé selon la même méthode que les modèles précédents, mais en
considérant au départ une version de la rhéologieµ(I ) prenant en compte des effets de
dilatance, i.e. pour laquelle la fraction volumique solide peut varier et décroît avec le
nombre inertiel. Comme ce modèle a été écrit pour un écoulement compressible, les
opérateurs de moyennisation sur la profondeur ont été remplacés par des moyennes
de Favre, qui prennent en compte les variations de la densité selon la profondeur.
En particulier, le modèle ne calcule pas la hauteur, mais une autre variable appelée
le "hold-up" qui correspond à l’intégrale sur la profondeur de la fraction de volume
solide, normalisée de manière à être égale à la hauteur lorsque l’écoulement est homo-
gène. Ce modèle a exactement la même structure que le modèle présenté au chapitre
3, et peut être écrit de la même façon en redéfinissant une constante de manière à
prendre en compte la dilatance, et en multipliant la loi de friction utilisée par un fac-
teur correctif. Ce facteur correctif permet d’un point de vue mathématique d’obtenir
un modèle consistant à l’ordre 1 avec la rhéologie. D’un point de vue physique, il in-
duit une légère atténuation de l’augmentation du coefficient de friction basale avec la
vitesse moyenne. La consistance du modèle à l’ordre 1 avec la rhéologie compressible
considérée permet de calculer le nombre de Froude critique pour l’instabilité des
ondes de surfaces de la rhéologie à partir du modèle linéarisé. Une version du modèle
avec diffusion a également été proposée, en suivant la même méthode qu’au chapitre
3. Une formule permettant de reconstruire la hauteur et la fraction volumique solide
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moyenne de manière consistante à partir de la solution a été donnée. Ce modèle
possède les mêmes limitations que le modèle proposé au chapitre 3. En particulier,
lorsque l’écoulement est fortement instationnaire et/ou non uniforme, ou lorsque
la pente n’est pas comprise entre les paramètres µ1 et µ2, la validité du modèle est
discutable. Comme cela a été fait au chapitre 4 pour le modèle basé sur la rhéologie
incompressible, une version régularisée de ce modèle pourrait être écrite afin de pro-
poser un système d’équations qui reste cohérent et prédictif dans une large gamme de
régimes. Cela permettrait notamment d’avoir un modèle valide à la fois sur des petites
pentes, pour lesquelles la transition vers l’arrêt s’accompagne d’une compaction du
milieu, et sur les grandes pentes, pour lesquelles l’écoulement est fortement accéléré,
et une dilatation importante du milieu peut avoir lieu. Dans ce régime accéléré, la
vitesse de glissement au fond peut se révéler importante, et utiliser une condition
de non glissement paraît peu compatible avec les observations expérimentales. Une
version encore plus élaborée du modèle pourrait être écrite en prenant en compte une
vitesse de glissement au fond. Cette version pourrait être utilisée pour modéliser les
ressauts granulaires qui se forment suite à l’impact de l’écoulement sur un obstacle.
Des comparaisons quantitatives pourraient être réalisées afin de confirmer la validité
du modèle.

Dans la troisième partie de la thèse, on a étudié un modèle jouet de suspension
granulaire. Ce modèle est analogue aux équations de Navier-Stokes sans pression,
avec un coefficient de diffusion non-linéaire (dépendant de la fraction volumique
solide), qui diverge lorsque la fraction volumique solide s’approche d’une valeur maxi-
male. Ce modèle présente donc quelques propriétés des suspensions granulaires qui
ont été établies expérimentalement, et qui sont liées au phénomène de congestion
(aussi appelé jamming). On a tout d’abord montré l’existence de solutions particu-
lières de type ondes progressives, qui connectent un état congestionné avec un état
non-congestionné. En particulier, la fraction volumique solide de l’onde progressive
tend en moins l’infini vers la fraction volumique maximale. On a ensuite démontré la
stabilité asymptotique de ces solutions. La preuve s’appuie sur plusieurs idées clefs.
On a commencé par reformuler le système dans les coordonnées lagrangiennes de
masse, ce qui permet de simplifier les calculs en faisant disparaître certains termes
non-linéaires liés au transport. De plus, on a considéré des variables intégrées, pour
lesquelles la perturbation satisfait une estimation d’énergie cruciale pour la stabilité
aux temps longs. On a ensuite identifié un espace d’énergie adapté, faisant intervenir
des poids dépendant de l’onde progressive considérée et dans lequel la fraction volu-
mique solide des perturbations n’excède pas la fraction maximale. Ce travail pourrait
être étendu à des modèles de suspensions plus élaborés, prenant notamment en
compte la pression au sein du milieu, et éventuellement d’autres caractéristiques,
comme un écoulement multi-dimensionnel.
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